Docs cleanup and Google-style tracker docstrings (#6751)
Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
This commit is contained in:
parent
60041014a8
commit
80802be1e5
44 changed files with 740 additions and 529 deletions
|
|
@ -4,7 +4,7 @@ description: Learn how to train your data on custom datasets using YOLOv5. Simpl
|
|||
keywords: YOLOv5, train on custom dataset, image collection, model training, object detection, image labelling, Ultralytics, PyTorch, machine learning
|
||||
---
|
||||
|
||||
📚 This guide explains how to train your own **custom dataset** with [YOLOv5](https://github.com/ultralytics/yolov5) 🚀. UPDATED 7 June 2023.
|
||||
📚 This guide explains how to train your own **custom dataset** with [YOLOv5](https://github.com/ultralytics/yolov5) 🚀.
|
||||
|
||||
## Before You Start
|
||||
|
||||
|
|
@ -29,7 +29,7 @@ Creating a custom model to detect your objects is an iterative process of collec
|
|||
|
||||
YOLOv5 models must be trained on labelled data in order to learn classes of objects in that data. There are two options for creating your dataset before you start training:
|
||||
|
||||
<details open markdown>
|
||||
<details open>
|
||||
<summary>Use <a href="https://roboflow.com/?ref=ultralytics">Roboflow</a> to create your dataset in YOLO format 🌟</summary>
|
||||
|
||||
!!! Warning
|
||||
|
|
@ -75,7 +75,7 @@ Export in `YOLOv5 Pytorch` format, then copy the snippet into your training scri
|
|||
Now continue with `2. Select a Model`.
|
||||
</details>
|
||||
|
||||
<details markdown>
|
||||
<details>
|
||||
<summary>Or manually prepare your dataset</summary>
|
||||
|
||||
### 1.1 Create dataset.yaml
|
||||
|
|
@ -94,7 +94,7 @@ names:
|
|||
0: person
|
||||
1: bicycle
|
||||
2: car
|
||||
...
|
||||
# ...
|
||||
77: teddy bear
|
||||
78: hair drier
|
||||
79: toothbrush
|
||||
|
|
@ -212,17 +212,18 @@ Once your model is trained you can use your best checkpoint `best.pt` to:
|
|||
* [Evolve](https://docs.ultralytics.com/yolov5/tutorials/hyperparameter_evolution) hyperparameters to improve performance
|
||||
* [Improve](https://docs.roboflow.com/adding-data/upload-api?ref=ultralytics) your model by sampling real-world images and adding them to your dataset
|
||||
|
||||
## Environments
|
||||
## Supported Environments
|
||||
|
||||
YOLOv5 is designed to be run in the following up-to-date verified environments (with all dependencies including [CUDA](https://developer.nvidia.com/cuda)/[CUDNN](https://developer.nvidia.com/cudnn), [Python](https://www.python.org/) and [PyTorch](https://pytorch.org/) preinstalled):
|
||||
Ultralytics provides a range of ready-to-use environments, each pre-installed with essential dependencies such as [CUDA](https://developer.nvidia.com/cuda), [CUDNN](https://developer.nvidia.com/cudnn), [Python](https://www.python.org/), and [PyTorch](https://pytorch.org/), to kickstart your projects.
|
||||
|
||||
- **Notebooks** with free GPU: <a href="https://bit.ly/yolov5-paperspace-notebook"><img src="https://assets.paperspace.io/img/gradient-badge.svg" alt="Run on Gradient"></a> <a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> <a href="https://www.kaggle.com/ultralytics/yolov5"><img src="https://kaggle.com/static/images/open-in-kaggle.svg" alt="Open In Kaggle"></a>
|
||||
- **Google Cloud** Deep Learning VM. See [GCP Quickstart Guide](https://docs.ultralytics.com/yolov5/environments/google_cloud_quickstart_tutorial/)
|
||||
- **Amazon** Deep Learning AMI. See [AWS Quickstart Guide](https://docs.ultralytics.com/yolov5/environments/aws_quickstart_tutorial/)
|
||||
- **Docker Image**. See [Docker Quickstart Guide](https://docs.ultralytics.com/yolov5/environments/docker_image_quickstart_tutorial/) <a href="https://hub.docker.com/r/ultralytics/yolov5"><img src="https://img.shields.io/docker/pulls/ultralytics/yolov5?logo=docker" alt="Docker Pulls"></a>
|
||||
- **Free GPU Notebooks**: <a href="https://bit.ly/yolov5-paperspace-notebook"><img src="https://assets.paperspace.io/img/gradient-badge.svg" alt="Run on Gradient"></a> <a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> <a href="https://www.kaggle.com/ultralytics/yolov5"><img src="https://kaggle.com/static/images/open-in-kaggle.svg" alt="Open In Kaggle"></a>
|
||||
- **Google Cloud**: [GCP Quickstart Guide](../environments/google_cloud_quickstart_tutorial.md)
|
||||
- **Amazon**: [AWS Quickstart Guide](../environments/aws_quickstart_tutorial.md)
|
||||
- **Azure**: [AzureML Quickstart Guide](../environments/azureml_quickstart_tutorial.md)
|
||||
- **Docker**: [Docker Quickstart Guide](../environments/docker_image_quickstart_tutorial.md) <a href="https://hub.docker.com/r/ultralytics/yolov5"><img src="https://img.shields.io/docker/pulls/ultralytics/yolov5?logo=docker" alt="Docker Pulls"></a>
|
||||
|
||||
## Status
|
||||
## Project Status
|
||||
|
||||
<a href="https://github.com/ultralytics/yolov5/actions/workflows/ci-testing.yml"><img src="https://github.com/ultralytics/yolov5/actions/workflows/ci-testing.yml/badge.svg" alt="YOLOv5 CI"></a>
|
||||
|
||||
If this badge is green, all [YOLOv5 GitHub Actions](https://github.com/ultralytics/yolov5/actions) Continuous Integration (CI) tests are currently passing. CI tests verify correct operation of YOLOv5 [training](https://github.com/ultralytics/yolov5/blob/master/train.py), [validation](https://github.com/ultralytics/yolov5/blob/master/val.py), [inference](https://github.com/ultralytics/yolov5/blob/master/detect.py), [export](https://github.com/ultralytics/yolov5/blob/master/export.py) and [benchmarks](https://github.com/ultralytics/yolov5/blob/master/benchmarks.py) on macOS, Windows, and Ubuntu every 24 hours and on every commit.
|
||||
This badge indicates that all [YOLOv5 GitHub Actions](https://github.com/ultralytics/yolov5/actions) Continuous Integration (CI) tests are successfully passing. These CI tests rigorously check the functionality and performance of YOLOv5 across various key aspects: [training](https://github.com/ultralytics/yolov5/blob/master/train.py), [validation](https://github.com/ultralytics/yolov5/blob/master/val.py), [inference](https://github.com/ultralytics/yolov5/blob/master/detect.py), [export](https://github.com/ultralytics/yolov5/blob/master/export.py), and [benchmarks](https://github.com/ultralytics/yolov5/blob/master/benchmarks.py). They ensure consistent and reliable operation on macOS, Windows, and Ubuntu, with tests conducted every 24 hours and upon each new commit.
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue