Docs cleanup and Google-style tracker docstrings (#6751)

Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
This commit is contained in:
Glenn Jocher 2023-12-03 04:12:33 +01:00 committed by GitHub
parent 60041014a8
commit 80802be1e5
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
44 changed files with 740 additions and 529 deletions

View file

@ -1,7 +1,7 @@
---
comments: true
description: Deep dive into Ultralytics' YOLOv5. Learn about object detection model - YOLOv5, how to train it on custom data, multi-GPU training and more.
keywords: Ultralytics, YOLOv5, Deep Learning, Object detection, PyTorch, Tutorial, Multi-GPU training, Custom data training
keywords: YOLOv5, object detection, computer vision, CUDA, PyTorch tutorial, multi-GPU training, custom dataset, model export, deployment, CI tests
---
# Comprehensive Guide to Ultralytics YOLOv5
@ -28,7 +28,7 @@ Built on PyTorch, this powerful deep learning framework has garnered immense pop
</div>
## Tutorials
## Explore and Learn
Here's a compilation of comprehensive tutorials that will guide you through different aspects of YOLOv5.
@ -49,21 +49,21 @@ Here's a compilation of comprehensive tutorials that will guide you through diff
* [YOLOv5 with Neural Magic](tutorials/neural_magic_pruning_quantization.md) Discover how to use Neural Magic's Deepsparse to prune and quantize your YOLOv5 model.
* [Comet Logging](tutorials/comet_logging_integration.md) 🌟 NEW: Explore how to utilize Comet for improved model training logging.
## Environments
## Supported Environments
YOLOv5 is designed to be run in the following up-to-date, verified environments, with all dependencies (including [CUDA](https://developer.nvidia.com/cuda)/[CUDNN](https://developer.nvidia.com/cudnn), [Python](https://www.python.org/), and [PyTorch](https://pytorch.org/)) pre-installed:
Ultralytics provides a range of ready-to-use environments, each pre-installed with essential dependencies such as [CUDA](https://developer.nvidia.com/cuda), [CUDNN](https://developer.nvidia.com/cudnn), [Python](https://www.python.org/), and [PyTorch](https://pytorch.org/), to kickstart your projects.
- **Notebooks** with free GPU: <a href="https://bit.ly/yolov5-paperspace-notebook"><img src="https://assets.paperspace.io/img/gradient-badge.svg" alt="Run on Gradient"></a> <a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> <a href="https://www.kaggle.com/ultralytics/yolov5"><img src="https://kaggle.com/static/images/open-in-kaggle.svg" alt="Open In Kaggle"></a>
- **Google Cloud** Deep Learning VM. See [GCP Quickstart Guide](environments/google_cloud_quickstart_tutorial.md)
- **Amazon** Deep Learning AMI. See [AWS Quickstart Guide](environments/aws_quickstart_tutorial.md)
- **Azure** Azure Machine Learning. See [AzureML Quickstart Guide](environments/azureml_quickstart_tutorial.md)
- **Docker Image**. See [Docker Quickstart Guide](environments/docker_image_quickstart_tutorial.md) <a href="https://hub.docker.com/r/ultralytics/yolov5"><img src="https://img.shields.io/docker/pulls/ultralytics/yolov5?logo=docker" alt="Docker Pulls"></a>
- **Free GPU Notebooks**: <a href="https://bit.ly/yolov5-paperspace-notebook"><img src="https://assets.paperspace.io/img/gradient-badge.svg" alt="Run on Gradient"></a> <a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> <a href="https://www.kaggle.com/ultralytics/yolov5"><img src="https://kaggle.com/static/images/open-in-kaggle.svg" alt="Open In Kaggle"></a>
- **Google Cloud**: [GCP Quickstart Guide](environments/google_cloud_quickstart_tutorial.md)
- **Amazon**: [AWS Quickstart Guide](environments/aws_quickstart_tutorial.md)
- **Azure**: [AzureML Quickstart Guide](environments/azureml_quickstart_tutorial.md)
- **Docker**: [Docker Quickstart Guide](environments/docker_image_quickstart_tutorial.md) <a href="https://hub.docker.com/r/ultralytics/yolov5"><img src="https://img.shields.io/docker/pulls/ultralytics/yolov5?logo=docker" alt="Docker Pulls"></a>
## Status
## Project Status
<a href="https://github.com/ultralytics/yolov5/actions/workflows/ci-testing.yml"><img src="https://github.com/ultralytics/yolov5/actions/workflows/ci-testing.yml/badge.svg" alt="YOLOv5 CI"></a>
This badge signifies that all [YOLOv5 GitHub Actions](https://github.com/ultralytics/yolov5/actions) Continuous Integration (CI) tests are currently passing. CI tests verify the correct operation of YOLOv5 [training](https://github.com/ultralytics/yolov5/blob/master/train.py), [validation](https://github.com/ultralytics/yolov5/blob/master/val.py), [inference](https://github.com/ultralytics/yolov5/blob/master/detect.py), [export](https://github.com/ultralytics/yolov5/blob/master/export.py) and [benchmarks](https://github.com/ultralytics/yolov5/blob/master/benchmarks.py) on macOS, Windows, and Ubuntu every 24 hours and with every new commit.
This badge indicates that all [YOLOv5 GitHub Actions](https://github.com/ultralytics/yolov5/actions) Continuous Integration (CI) tests are successfully passing. These CI tests rigorously check the functionality and performance of YOLOv5 across various key aspects: [training](https://github.com/ultralytics/yolov5/blob/master/train.py), [validation](https://github.com/ultralytics/yolov5/blob/master/val.py), [inference](https://github.com/ultralytics/yolov5/blob/master/detect.py), [export](https://github.com/ultralytics/yolov5/blob/master/export.py), and [benchmarks](https://github.com/ultralytics/yolov5/blob/master/benchmarks.py). They ensure consistent and reliable operation on macOS, Windows, and Ubuntu, with tests conducted every 24 hours and upon each new commit.
<br>
<div align="center">
@ -81,3 +81,11 @@ This badge signifies that all [YOLOv5 GitHub Actions](https://github.com/ultraly
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="3%" alt="space">
<a href="https://ultralytics.com/discord"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-discord.png" width="3%" alt="Ultralytics Discord"></a>
</div>
## Connect and Contribute
Your journey with YOLOv5 doesn't have to be a solitary one. Join our vibrant community on [GitHub](https://github.com/ultralytics/yolov5), connect with professionals on [LinkedIn](https://www.linkedin.com/company/ultralytics/), share your results on [Twitter](https://twitter.com/ultralytics), and find educational resources on [YouTube](https://youtube.com/ultralytics). Follow us on [TikTok](https://www.tiktok.com/@ultralytics) and [Instagram](https://www.instagram.com/ultralytics/) for more engaging content.
Interested in contributing? We welcome contributions of all forms; from code improvements and bug reports to documentation updates. Check out our [contributing guidelines](https://github.com/ultralytics/yolov5/blob/master/CONTRIBUTING.md) for more information.
We're excited to see the innovative ways you'll use YOLOv5. Dive in, experiment, and revolutionize your computer vision projects! 🚀