Implement all missing docstrings (#5298)
Co-authored-by: snyk-bot <snyk-bot@snyk.io> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
This commit is contained in:
parent
e7f0658744
commit
7fd5dcbd86
26 changed files with 649 additions and 79 deletions
|
|
@ -37,7 +37,12 @@ class DFL(nn.Module):
|
|||
class Proto(nn.Module):
|
||||
"""YOLOv8 mask Proto module for segmentation models."""
|
||||
|
||||
def __init__(self, c1, c_=256, c2=32): # ch_in, number of protos, number of masks
|
||||
def __init__(self, c1, c_=256, c2=32):
|
||||
"""
|
||||
Initializes the YOLOv8 mask Proto module with specified number of protos and masks.
|
||||
|
||||
Input arguments are ch_in, number of protos, number of masks.
|
||||
"""
|
||||
super().__init__()
|
||||
self.cv1 = Conv(c1, c_, k=3)
|
||||
self.upsample = nn.ConvTranspose2d(c_, c_, 2, 2, 0, bias=True) # nn.Upsample(scale_factor=2, mode='nearest')
|
||||
|
|
@ -124,7 +129,12 @@ class SPP(nn.Module):
|
|||
class SPPF(nn.Module):
|
||||
"""Spatial Pyramid Pooling - Fast (SPPF) layer for YOLOv5 by Glenn Jocher."""
|
||||
|
||||
def __init__(self, c1, c2, k=5): # equivalent to SPP(k=(5, 9, 13))
|
||||
def __init__(self, c1, c2, k=5):
|
||||
"""
|
||||
Initializes the SPPF layer with given input/output channels and kernel size.
|
||||
|
||||
This module is equivalent to SPP(k=(5, 9, 13)).
|
||||
"""
|
||||
super().__init__()
|
||||
c_ = c1 // 2 # hidden channels
|
||||
self.cv1 = Conv(c1, c_, 1, 1)
|
||||
|
|
@ -142,7 +152,8 @@ class SPPF(nn.Module):
|
|||
class C1(nn.Module):
|
||||
"""CSP Bottleneck with 1 convolution."""
|
||||
|
||||
def __init__(self, c1, c2, n=1): # ch_in, ch_out, number
|
||||
def __init__(self, c1, c2, n=1):
|
||||
"""Initializes the CSP Bottleneck with configurations for 1 convolution with arguments ch_in, ch_out, number."""
|
||||
super().__init__()
|
||||
self.cv1 = Conv(c1, c2, 1, 1)
|
||||
self.m = nn.Sequential(*(Conv(c2, c2, 3) for _ in range(n)))
|
||||
|
|
@ -156,7 +167,10 @@ class C1(nn.Module):
|
|||
class C2(nn.Module):
|
||||
"""CSP Bottleneck with 2 convolutions."""
|
||||
|
||||
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
|
||||
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):
|
||||
"""Initializes the CSP Bottleneck with 2 convolutions module with arguments ch_in, ch_out, number, shortcut,
|
||||
groups, expansion.
|
||||
"""
|
||||
super().__init__()
|
||||
self.c = int(c2 * e) # hidden channels
|
||||
self.cv1 = Conv(c1, 2 * self.c, 1, 1)
|
||||
|
|
@ -173,7 +187,10 @@ class C2(nn.Module):
|
|||
class C2f(nn.Module):
|
||||
"""Faster Implementation of CSP Bottleneck with 2 convolutions."""
|
||||
|
||||
def __init__(self, c1, c2, n=1, shortcut=False, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
|
||||
def __init__(self, c1, c2, n=1, shortcut=False, g=1, e=0.5):
|
||||
"""Initialize CSP bottleneck layer with two convolutions with arguments ch_in, ch_out, number, shortcut, groups,
|
||||
expansion.
|
||||
"""
|
||||
super().__init__()
|
||||
self.c = int(c2 * e) # hidden channels
|
||||
self.cv1 = Conv(c1, 2 * self.c, 1, 1)
|
||||
|
|
@ -196,7 +213,8 @@ class C2f(nn.Module):
|
|||
class C3(nn.Module):
|
||||
"""CSP Bottleneck with 3 convolutions."""
|
||||
|
||||
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
|
||||
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):
|
||||
"""Initialize the CSP Bottleneck with given channels, number, shortcut, groups, and expansion values."""
|
||||
super().__init__()
|
||||
c_ = int(c2 * e) # hidden channels
|
||||
self.cv1 = Conv(c1, c_, 1, 1)
|
||||
|
|
@ -259,7 +277,8 @@ class C3Ghost(C3):
|
|||
class GhostBottleneck(nn.Module):
|
||||
"""Ghost Bottleneck https://github.com/huawei-noah/ghostnet."""
|
||||
|
||||
def __init__(self, c1, c2, k=3, s=1): # ch_in, ch_out, kernel, stride
|
||||
def __init__(self, c1, c2, k=3, s=1):
|
||||
"""Initializes GhostBottleneck module with arguments ch_in, ch_out, kernel, stride."""
|
||||
super().__init__()
|
||||
c_ = c2 // 2
|
||||
self.conv = nn.Sequential(
|
||||
|
|
@ -277,7 +296,10 @@ class GhostBottleneck(nn.Module):
|
|||
class Bottleneck(nn.Module):
|
||||
"""Standard bottleneck."""
|
||||
|
||||
def __init__(self, c1, c2, shortcut=True, g=1, k=(3, 3), e=0.5): # ch_in, ch_out, shortcut, groups, kernels, expand
|
||||
def __init__(self, c1, c2, shortcut=True, g=1, k=(3, 3), e=0.5):
|
||||
"""Initializes a bottleneck module with given input/output channels, shortcut option, group, kernels, and
|
||||
expansion.
|
||||
"""
|
||||
super().__init__()
|
||||
c_ = int(c2 * e) # hidden channels
|
||||
self.cv1 = Conv(c1, c_, k[0], 1)
|
||||
|
|
@ -292,7 +314,8 @@ class Bottleneck(nn.Module):
|
|||
class BottleneckCSP(nn.Module):
|
||||
"""CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks."""
|
||||
|
||||
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
|
||||
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):
|
||||
"""Initializes the CSP Bottleneck given arguments for ch_in, ch_out, number, shortcut, groups, expansion."""
|
||||
super().__init__()
|
||||
c_ = int(c2 * e) # hidden channels
|
||||
self.cv1 = Conv(c1, c_, 1, 1)
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue