Implement all missing docstrings (#5298)

Co-authored-by: snyk-bot <snyk-bot@snyk.io>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
This commit is contained in:
Glenn Jocher 2023-10-10 20:07:13 +02:00 committed by GitHub
parent e7f0658744
commit 7fd5dcbd86
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
26 changed files with 649 additions and 79 deletions

View file

@ -37,7 +37,12 @@ class DFL(nn.Module):
class Proto(nn.Module):
"""YOLOv8 mask Proto module for segmentation models."""
def __init__(self, c1, c_=256, c2=32): # ch_in, number of protos, number of masks
def __init__(self, c1, c_=256, c2=32):
"""
Initializes the YOLOv8 mask Proto module with specified number of protos and masks.
Input arguments are ch_in, number of protos, number of masks.
"""
super().__init__()
self.cv1 = Conv(c1, c_, k=3)
self.upsample = nn.ConvTranspose2d(c_, c_, 2, 2, 0, bias=True) # nn.Upsample(scale_factor=2, mode='nearest')
@ -124,7 +129,12 @@ class SPP(nn.Module):
class SPPF(nn.Module):
"""Spatial Pyramid Pooling - Fast (SPPF) layer for YOLOv5 by Glenn Jocher."""
def __init__(self, c1, c2, k=5): # equivalent to SPP(k=(5, 9, 13))
def __init__(self, c1, c2, k=5):
"""
Initializes the SPPF layer with given input/output channels and kernel size.
This module is equivalent to SPP(k=(5, 9, 13)).
"""
super().__init__()
c_ = c1 // 2 # hidden channels
self.cv1 = Conv(c1, c_, 1, 1)
@ -142,7 +152,8 @@ class SPPF(nn.Module):
class C1(nn.Module):
"""CSP Bottleneck with 1 convolution."""
def __init__(self, c1, c2, n=1): # ch_in, ch_out, number
def __init__(self, c1, c2, n=1):
"""Initializes the CSP Bottleneck with configurations for 1 convolution with arguments ch_in, ch_out, number."""
super().__init__()
self.cv1 = Conv(c1, c2, 1, 1)
self.m = nn.Sequential(*(Conv(c2, c2, 3) for _ in range(n)))
@ -156,7 +167,10 @@ class C1(nn.Module):
class C2(nn.Module):
"""CSP Bottleneck with 2 convolutions."""
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):
"""Initializes the CSP Bottleneck with 2 convolutions module with arguments ch_in, ch_out, number, shortcut,
groups, expansion.
"""
super().__init__()
self.c = int(c2 * e) # hidden channels
self.cv1 = Conv(c1, 2 * self.c, 1, 1)
@ -173,7 +187,10 @@ class C2(nn.Module):
class C2f(nn.Module):
"""Faster Implementation of CSP Bottleneck with 2 convolutions."""
def __init__(self, c1, c2, n=1, shortcut=False, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
def __init__(self, c1, c2, n=1, shortcut=False, g=1, e=0.5):
"""Initialize CSP bottleneck layer with two convolutions with arguments ch_in, ch_out, number, shortcut, groups,
expansion.
"""
super().__init__()
self.c = int(c2 * e) # hidden channels
self.cv1 = Conv(c1, 2 * self.c, 1, 1)
@ -196,7 +213,8 @@ class C2f(nn.Module):
class C3(nn.Module):
"""CSP Bottleneck with 3 convolutions."""
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):
"""Initialize the CSP Bottleneck with given channels, number, shortcut, groups, and expansion values."""
super().__init__()
c_ = int(c2 * e) # hidden channels
self.cv1 = Conv(c1, c_, 1, 1)
@ -259,7 +277,8 @@ class C3Ghost(C3):
class GhostBottleneck(nn.Module):
"""Ghost Bottleneck https://github.com/huawei-noah/ghostnet."""
def __init__(self, c1, c2, k=3, s=1): # ch_in, ch_out, kernel, stride
def __init__(self, c1, c2, k=3, s=1):
"""Initializes GhostBottleneck module with arguments ch_in, ch_out, kernel, stride."""
super().__init__()
c_ = c2 // 2
self.conv = nn.Sequential(
@ -277,7 +296,10 @@ class GhostBottleneck(nn.Module):
class Bottleneck(nn.Module):
"""Standard bottleneck."""
def __init__(self, c1, c2, shortcut=True, g=1, k=(3, 3), e=0.5): # ch_in, ch_out, shortcut, groups, kernels, expand
def __init__(self, c1, c2, shortcut=True, g=1, k=(3, 3), e=0.5):
"""Initializes a bottleneck module with given input/output channels, shortcut option, group, kernels, and
expansion.
"""
super().__init__()
c_ = int(c2 * e) # hidden channels
self.cv1 = Conv(c1, c_, k[0], 1)
@ -292,7 +314,8 @@ class Bottleneck(nn.Module):
class BottleneckCSP(nn.Module):
"""CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks."""
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):
"""Initializes the CSP Bottleneck given arguments for ch_in, ch_out, number, shortcut, groups, expansion."""
super().__init__()
c_ = int(c2 * e) # hidden channels
self.cv1 = Conv(c1, c_, 1, 1)