Implement all missing docstrings (#5298)

Co-authored-by: snyk-bot <snyk-bot@snyk.io>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
This commit is contained in:
Glenn Jocher 2023-10-10 20:07:13 +02:00 committed by GitHub
parent e7f0658744
commit 7fd5dcbd86
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
26 changed files with 649 additions and 79 deletions

View file

@ -16,6 +16,20 @@ from .encoders import ImageEncoderViT, PromptEncoder
class Sam(nn.Module):
"""
Sam (Segment Anything Model) is designed for object segmentation tasks. It uses image encoders to generate image
embeddings, and prompt encoders to encode various types of input prompts. These embeddings are then used by the mask
decoder to predict object masks.
Attributes:
mask_threshold (float): Threshold value for mask prediction.
image_format (str): Format of the input image, default is 'RGB'.
image_encoder (ImageEncoderViT): The backbone used to encode the image into embeddings.
prompt_encoder (PromptEncoder): Encodes various types of input prompts.
mask_decoder (MaskDecoder): Predicts object masks from the image and prompt embeddings.
pixel_mean (List[float]): Mean pixel values for image normalization.
pixel_std (List[float]): Standard deviation values for image normalization.
"""
mask_threshold: float = 0.0
image_format: str = 'RGB'
@ -28,18 +42,19 @@ class Sam(nn.Module):
pixel_std: List[float] = (58.395, 57.12, 57.375)
) -> None:
"""
SAM predicts object masks from an image and input prompts.
Initialize the Sam class to predict object masks from an image and input prompts.
Note:
All forward() operations moved to SAMPredictor.
Args:
image_encoder (ImageEncoderViT): The backbone used to encode the image into image embeddings that allow for
efficient mask prediction.
prompt_encoder (PromptEncoder): Encodes various types of input prompts.
mask_decoder (MaskDecoder): Predicts masks from the image embeddings and encoded prompts.
pixel_mean (list(float)): Mean values for normalizing pixels in the input image.
pixel_std (list(float)): Std values for normalizing pixels in the input image.
image_encoder (ImageEncoderViT): The backbone used to encode the image into image embeddings.
prompt_encoder (PromptEncoder): Encodes various types of input prompts.
mask_decoder (MaskDecoder): Predicts masks from the image embeddings and encoded prompts.
pixel_mean (List[float], optional): Mean values for normalizing pixels in the input image. Defaults to
(123.675, 116.28, 103.53).
pixel_std (List[float], optional): Std values for normalizing pixels in the input image. Defaults to
(58.395, 57.12, 57.375).
"""
super().__init__()
self.image_encoder = image_encoder