Implement all missing docstrings (#5298)
Co-authored-by: snyk-bot <snyk-bot@snyk.io> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
This commit is contained in:
parent
e7f0658744
commit
7fd5dcbd86
26 changed files with 649 additions and 79 deletions
|
|
@ -23,6 +23,26 @@ from .val import NASValidator
|
|||
|
||||
|
||||
class NAS(Model):
|
||||
"""
|
||||
YOLO NAS model for object detection.
|
||||
|
||||
This class provides an interface for the YOLO-NAS models and extends the `Model` class from Ultralytics engine.
|
||||
It is designed to facilitate the task of object detection using pre-trained or custom-trained YOLO-NAS models.
|
||||
|
||||
Example:
|
||||
```python
|
||||
from ultralytics import NAS
|
||||
|
||||
model = NAS('yolo_nas_s')
|
||||
results = model.predict('ultralytics/assets/bus.jpg')
|
||||
```
|
||||
|
||||
Attributes:
|
||||
model (str): Path to the pre-trained model or model name. Defaults to 'yolo_nas_s.pt'.
|
||||
|
||||
Note:
|
||||
YOLO-NAS models only support pre-trained models. Do not provide YAML configuration files.
|
||||
"""
|
||||
|
||||
def __init__(self, model='yolo_nas_s.pt') -> None:
|
||||
"""Initializes the NAS model with the provided or default 'yolo_nas_s.pt' model."""
|
||||
|
|
|
|||
|
|
@ -8,6 +8,29 @@ from ultralytics.utils import ops
|
|||
|
||||
|
||||
class NASPredictor(BasePredictor):
|
||||
"""
|
||||
Ultralytics YOLO NAS Predictor for object detection.
|
||||
|
||||
This class extends the `BasePredictor` from Ultralytics engine and is responsible for post-processing the
|
||||
raw predictions generated by the YOLO NAS models. It applies operations like non-maximum suppression and
|
||||
scaling the bounding boxes to fit the original image dimensions.
|
||||
|
||||
Attributes:
|
||||
args (Namespace): Namespace containing various configurations for post-processing.
|
||||
|
||||
Example:
|
||||
```python
|
||||
from ultralytics import NAS
|
||||
|
||||
model = NAS('yolo_nas_s')
|
||||
predictor = model.predictor
|
||||
# Assumes that raw_preds, img, orig_imgs are available
|
||||
results = predictor.postprocess(raw_preds, img, orig_imgs)
|
||||
```
|
||||
|
||||
Note:
|
||||
Typically, this class is not instantiated directly. It is used internally within the `NAS` class.
|
||||
"""
|
||||
|
||||
def postprocess(self, preds_in, img, orig_imgs):
|
||||
"""Postprocess predictions and returns a list of Results objects."""
|
||||
|
|
|
|||
|
|
@ -9,6 +9,30 @@ __all__ = ['NASValidator']
|
|||
|
||||
|
||||
class NASValidator(DetectionValidator):
|
||||
"""
|
||||
Ultralytics YOLO NAS Validator for object detection.
|
||||
|
||||
Extends `DetectionValidator` from the Ultralytics models package and is designed to post-process the raw predictions
|
||||
generated by YOLO NAS models. It performs non-maximum suppression to remove overlapping and low-confidence boxes,
|
||||
ultimately producing the final detections.
|
||||
|
||||
Attributes:
|
||||
args (Namespace): Namespace containing various configurations for post-processing, such as confidence and IoU thresholds.
|
||||
lb (torch.Tensor): Optional tensor for multilabel NMS.
|
||||
|
||||
Example:
|
||||
```python
|
||||
from ultralytics import NAS
|
||||
|
||||
model = NAS('yolo_nas_s')
|
||||
validator = model.validator
|
||||
# Assumes that raw_preds are available
|
||||
final_preds = validator.postprocess(raw_preds)
|
||||
```
|
||||
|
||||
Note:
|
||||
This class is generally not instantiated directly but is used internally within the `NAS` class.
|
||||
"""
|
||||
|
||||
def postprocess(self, preds_in):
|
||||
"""Apply Non-maximum suppression to prediction outputs."""
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue