PyCharm Code and Docs Inspect fixes v1 (#18461)
Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com> Co-authored-by: UltralyticsAssistant <web@ultralytics.com> Co-authored-by: Ultralytics Assistant <135830346+UltralyticsAssistant@users.noreply.github.com> Co-authored-by: Laughing <61612323+Laughing-q@users.noreply.github.com> Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>
This commit is contained in:
parent
126867e355
commit
7f1a50e893
26 changed files with 90 additions and 91 deletions
|
|
@ -425,7 +425,7 @@ class SAM2Model(torch.nn.Module):
|
|||
low_res_masks: Tensor of shape (B, 1, H*4, W*4) with the best low-resolution mask.
|
||||
high_res_masks: Tensor of shape (B, 1, H*16, W*16) with the best high-resolution mask.
|
||||
obj_ptr: Tensor of shape (B, C) with object pointer vector for the output mask.
|
||||
object_score_logits: Tensor of shape (B,) with object score logits.
|
||||
object_score_logits: Tensor of shape (B) with object score logits.
|
||||
|
||||
Where M is 3 if multimask_output=True, and 1 if multimask_output=False.
|
||||
|
||||
|
|
@ -643,7 +643,7 @@ class SAM2Model(torch.nn.Module):
|
|||
if not is_init_cond_frame:
|
||||
# Retrieve the memories encoded with the maskmem backbone
|
||||
to_cat_memory, to_cat_memory_pos_embed = [], []
|
||||
# Add conditioning frames's output first (all cond frames have t_pos=0 for
|
||||
# Add conditioning frame's output first (all cond frames have t_pos=0 for
|
||||
# when getting temporal positional embedding below)
|
||||
assert len(output_dict["cond_frame_outputs"]) > 0
|
||||
# Select a maximum number of temporally closest cond frames for cross attention
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue