ultralytics 8.1.44 add IS_RASPBERRYPI and constants refactor (#9827)

Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com>
Co-authored-by: UltralyticsAssistant <web@ultralytics.com>
This commit is contained in:
Glenn Jocher 2024-04-07 00:47:12 +02:00 committed by GitHub
parent 3f34a7c3af
commit 7d891a4aa4
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
43 changed files with 146 additions and 141 deletions

View file

@ -5,8 +5,8 @@ import numpy as np
from .basetrack import BaseTrack, TrackState
from .utils import matching
from .utils.kalman_filter import KalmanFilterXYAH
from ..utils.ops import xywh2ltwh
from ..utils import LOGGER
from ..utils.ops import xywh2ltwh
class STrack(BaseTrack):

View file

@ -39,8 +39,8 @@ class KalmanFilterXYAH:
and height h.
Returns:
(tuple[ndarray, ndarray]): Returns the mean vector (8 dimensional) and covariance matrix (8x8 dimensional) of
the new track. Unobserved velocities are initialized to 0 mean.
(tuple[ndarray, ndarray]): Returns the mean vector (8 dimensional) and covariance matrix (8x8 dimensional)
of the new track. Unobserved velocities are initialized to 0 mean.
"""
mean_pos = measurement
mean_vel = np.zeros_like(mean_pos)
@ -235,8 +235,8 @@ class KalmanFilterXYWH(KalmanFilterXYAH):
measurement (ndarray): Bounding box coordinates (x, y, w, h) with center position (x, y), width, and height.
Returns:
(tuple[ndarray, ndarray]): Returns the mean vector (8 dimensional) and covariance matrix (8x8 dimensional) of
the new track. Unobserved velocities are initialized to 0 mean.
(tuple[ndarray, ndarray]): Returns the mean vector (8 dimensional) and covariance matrix (8x8 dimensional)
of the new track. Unobserved velocities are initialized to 0 mean.
"""
mean_pos = measurement
mean_vel = np.zeros_like(mean_pos)

View file

@ -4,7 +4,7 @@ import numpy as np
import scipy
from scipy.spatial.distance import cdist
from ultralytics.utils.metrics import bbox_ioa, batch_probiou
from ultralytics.utils.metrics import batch_probiou, bbox_ioa
try:
import lap # for linear_assignment