Threaded inference docs improvements (#16313)
Signed-off-by: UltralyticsAssistant <web@ultralytics.com> Co-authored-by: UltralyticsAssistant <web@ultralytics.com>
This commit is contained in:
parent
617d58d430
commit
7b19e0daa0
5 changed files with 70 additions and 95 deletions
|
|
@ -89,14 +89,25 @@ YOLOv8 也可以在 Python 环境中直接使用,并接受与上述 CLI 示例
|
|||
from ultralytics import YOLO
|
||||
|
||||
# 加载模型
|
||||
model = YOLO("yolov8n.yaml") # 从头开始构建新模型
|
||||
model = YOLO("yolov8n.pt") # 加载预训练模型(建议用于训练)
|
||||
model = YOLO("yolov8n.pt")
|
||||
|
||||
# 使用模型
|
||||
model.train(data="coco8.yaml", epochs=3) # 训练模型
|
||||
metrics = model.val() # 在验证集上评估模型性能
|
||||
results = model("https://ultralytics.com/images/bus.jpg") # 对图像进行预测
|
||||
success = model.export(format="onnx") # 将模型导出为 ONNX 格式
|
||||
# 训练模型
|
||||
train_results = model.train(
|
||||
data="coco8.yaml", # 数据配置文件的路径
|
||||
epochs=100, # 训练的轮数
|
||||
imgsz=640, # 训练图像大小
|
||||
device="cpu", # 运行的设备,例如 device=0 或 device=0,1,2,3 或 device=cpu
|
||||
)
|
||||
|
||||
# 在验证集上评估模型性能
|
||||
metrics = model.val()
|
||||
|
||||
# 对图像进行目标检测
|
||||
results = model("path/to/image.jpg")
|
||||
results[0].show()
|
||||
|
||||
# 将模型导出为 ONNX 格式
|
||||
path = model.export(format="onnx") # 返回导出的模型路径
|
||||
```
|
||||
|
||||
查看 YOLOv8 [Python 文档](https://docs.ultralytics.com/usage/python/)以获取更多示例。
|
||||
|
|
@ -141,23 +152,6 @@ Ultralytics 提供了 YOLOv8 的交互式笔记本,涵盖训练、验证、跟
|
|||
|
||||
</details>
|
||||
|
||||
<details><summary>检测(Open Image V7)</summary>
|
||||
|
||||
查看[检测文档](https://docs.ultralytics.com/tasks/detect/)以获取这些在[Open Image V7](https://docs.ultralytics.com/datasets/detect/open-images-v7/)上训练的模型的使用示例,其中包括600个预训练类别。
|
||||
|
||||
| 模型 | 尺寸<br><sup>(像素) | mAP<sup>验证<br>50-95 | 速度<br><sup>CPU ONNX<br>(毫秒) | 速度<br><sup>A100 TensorRT<br>(毫秒) | 参数<br><sup>(M) | 浮点运算<br><sup>(B) |
|
||||
| ----------------------------------------------------------------------------------------- | ------------------- | --------------------- | ------------------------------- | ------------------------------------ | ---------------- | -------------------- |
|
||||
| [YOLOv8n](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8n-oiv7.pt) | 640 | 18.4 | 142.4 | 1.21 | 3.5 | 10.5 |
|
||||
| [YOLOv8s](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8s-oiv7.pt) | 640 | 27.7 | 183.1 | 1.40 | 11.4 | 29.7 |
|
||||
| [YOLOv8m](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8m-oiv7.pt) | 640 | 33.6 | 408.5 | 2.26 | 26.2 | 80.6 |
|
||||
| [YOLOv8l](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8l-oiv7.pt) | 640 | 34.9 | 596.9 | 2.43 | 44.1 | 167.4 |
|
||||
| [YOLOv8x](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8x-oiv7.pt) | 640 | 36.3 | 860.6 | 3.56 | 68.7 | 260.6 |
|
||||
|
||||
- **mAP<sup>验证</sup>** 值适用于在[Open Image V7](https://docs.ultralytics.com/datasets/detect/open-images-v7/)数据集上的单模型单尺度。 <br>通过 `yolo val detect data=open-images-v7.yaml device=0` 以复现。
|
||||
- **速度** 在使用[Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/)实例对Open Image V7验证图像进行平均测算。 <br>通过 `yolo val detect data=open-images-v7.yaml batch=1 device=0|cpu` 以复现。
|
||||
|
||||
</details>
|
||||
|
||||
<details><summary>分割 (COCO)</summary>
|
||||
|
||||
查看[分割文档](https://docs.ultralytics.com/tasks/segment/)以获取这些在[COCO-Seg](https://docs.ultralytics.com/datasets/segment/coco/)上训练的模型的使用示例,其中包括80个预训练类别。
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue