diff --git a/README.md b/README.md
index 1a9d3785..5ee71729 100644
--- a/README.md
+++ b/README.md
@@ -109,7 +109,7 @@ path = model.export(format="onnx") # export the model to ONNX format
YOLOv8 [Detect](https://docs.ultralytics.com/tasks/detect), [Segment](https://docs.ultralytics.com/tasks/segment) and [Pose](https://docs.ultralytics.com/tasks/pose) models pretrained on the [COCO](https://docs.ultralytics.com/datasets/detect/coco) dataset are available here, as well as YOLOv8 [Classify](https://docs.ultralytics.com/tasks/classify) models pretrained on the [ImageNet](https://docs.ultralytics.com/datasets/classify/imagenet) dataset. [Track](https://docs.ultralytics.com/modes/track) mode is available for all Detect, Segment and Pose models.
-
+
All [Models](https://github.com/ultralytics/ultralytics/tree/main/ultralytics/cfg/models) download automatically from the latest Ultralytics [release](https://github.com/ultralytics/assets/releases) on first use.
@@ -243,7 +243,7 @@ Our key integrations with leading AI platforms extend the functionality of Ultra
Experience seamless AI with [Ultralytics HUB](https://bit.ly/ultralytics_hub) ⭐, the all-in-one solution for data visualization, YOLOv5 and YOLOv8 🚀 model training and deployment, without any coding. Transform images into actionable insights and bring your AI visions to life with ease using our cutting-edge platform and user-friendly [Ultralytics App](https://ultralytics.com/app_install). Start your journey for **Free** now!
-
+
##
+
所有[模型](https://github.com/ultralytics/ultralytics/tree/main/ultralytics/cfg/models)在首次使用时会自动从最新的Ultralytics [发布版本](https://github.com/ultralytics/assets/releases)下载。
@@ -242,7 +242,7 @@ success = model.export(format="onnx") # 将模型导出为 ONNX 格式
体验 [Ultralytics HUB](https://bit.ly/ultralytics_hub) ⭐ 带来的无缝 AI,这是一个一体化解决方案,用于数据可视化、YOLOv5 和即将推出的 YOLOv8 🚀 模型训练和部署,无需任何编码。通过我们先进的平台和用户友好的 [Ultralytics 应用程序](https://ultralytics.com/app_install),轻松将图像转化为可操作的见解,并实现您的 AI 愿景。现在就开始您的**免费**之旅!
-
+
##
+
+
+
## Datasets Integrations
diff --git a/docs/integrations/ray-tune.md b/docs/integrations/ray-tune.md
index ec7817c0..46eb5ffb 100644
--- a/docs/integrations/ray-tune.md
+++ b/docs/integrations/ray-tune.md
@@ -120,11 +120,11 @@ In this example, we demonstrate how to use a custom search space for hyperparame
In the code snippet above, we create a YOLO model with the "yolov8n.pt" pretrained weights. Then, we call the `tune()` method, specifying the dataset configuration with "coco128.yaml". We provide a custom search space for the initial learning rate `lr0` using a dictionary with the key "lr0" and the value `tune.uniform(1e-5, 1e-1)`. Finally, we pass additional training arguments, such as the number of epochs directly to the tune method as `epochs=50`.
-# Processing Ray Tune Results
+## Processing Ray Tune Results
After running a hyperparameter tuning experiment with Ray Tune, you might want to perform various analyses on the obtained results. This guide will take you through common workflows for processing and analyzing these results.
-## Loading Tune Experiment Results from a Directory
+### Loading Tune Experiment Results from a Directory
After running the tuning experiment with `tuner.fit()`, you can load the results from a directory. This is useful, especially if you're performing the analysis after the initial training script has exited.
@@ -136,7 +136,7 @@ restored_tuner = tune.Tuner.restore(experiment_path, trainable=train_mnist)
result_grid = restored_tuner.get_results()
```
-## Basic Experiment-Level Analysis
+### Basic Experiment-Level Analysis
Get an overview of how trials performed. You can quickly check if there were any errors during the trials.
@@ -147,7 +147,7 @@ else:
print("No errors!")
```
-## Basic Trial-Level Analysis
+### Basic Trial-Level Analysis
Access individual trial hyperparameter configurations and the last reported metrics.
@@ -156,7 +156,7 @@ for i, result in enumerate(result_grid):
print(f"Trial #{i}: Configuration: {result.config}, Last Reported Metrics: {result.metrics}")
```
-## Plotting the Entire History of Reported Metrics for a Trial
+### Plotting the Entire History of Reported Metrics for a Trial
You can plot the history of reported metrics for each trial to see how the metrics evolved over time.
diff --git a/docs/modes/benchmark.md b/docs/modes/benchmark.md
index 431ee917..cdee300f 100644
--- a/docs/modes/benchmark.md
+++ b/docs/modes/benchmark.md
@@ -6,7 +6,7 @@ keywords: Ultralytics, YOLOv8, benchmarking, speed profiling, accuracy profiling
# Model Benchmarking with Ultralytics YOLO
-
+
## Introduction
diff --git a/docs/modes/export.md b/docs/modes/export.md
index 5345172c..d0c2da00 100644
--- a/docs/modes/export.md
+++ b/docs/modes/export.md
@@ -6,7 +6,7 @@ keywords: YOLO, YOLOv8, Ultralytics, Model export, ONNX, TensorRT, CoreML, Tenso
# Model Export with Ultralytics YOLO
-
+
## Introduction
diff --git a/docs/modes/index.md b/docs/modes/index.md
index 315347e9..64dc8d9f 100644
--- a/docs/modes/index.md
+++ b/docs/modes/index.md
@@ -6,7 +6,7 @@ keywords: Ultralytics, YOLOv8, Machine Learning, Object Detection, Training, Val
# Ultralytics YOLOv8 Modes
-
+
## Introduction
diff --git a/docs/modes/predict.md b/docs/modes/predict.md
index be1c71f6..7c928169 100644
--- a/docs/modes/predict.md
+++ b/docs/modes/predict.md
@@ -6,7 +6,7 @@ keywords: Ultralytics, YOLOv8, predict mode, inference sources, prediction tasks
# Model Prediction with Ultralytics YOLO
-
+
## Introduction
diff --git a/docs/modes/train.md b/docs/modes/train.md
index 7bb462e9..e3db6c30 100644
--- a/docs/modes/train.md
+++ b/docs/modes/train.md
@@ -6,7 +6,7 @@ keywords: Ultralytics, YOLOv8, YOLO, object detection, train mode, custom datase
# Model Training with Ultralytics YOLO
-
+
## Introduction
diff --git a/docs/modes/val.md b/docs/modes/val.md
index 1e6648cd..b964ee7b 100644
--- a/docs/modes/val.md
+++ b/docs/modes/val.md
@@ -6,7 +6,7 @@ keywords: Ultralytics, YOLO Docs, YOLOv8, validation, model evaluation, hyperpar
# Model Validation with Ultralytics YOLO
-
+
## Introduction
diff --git a/docs/tasks/index.md b/docs/tasks/index.md
index b43dbd30..c50d164a 100644
--- a/docs/tasks/index.md
+++ b/docs/tasks/index.md
@@ -7,7 +7,7 @@ keywords: Ultralytics, YOLOv8, Detection, Segmentation, Classification, Pose Est
# Ultralytics YOLOv8 Tasks
+
YOLOv8 is an AI framework that supports multiple computer vision **tasks**. The framework can be used to perform [detection](detect.md), [segmentation](segment.md), [classification](classify.md), and [pose](pose.md) estimation. Each of these tasks has a different objective and use case.
diff --git a/docs/zh/index.md b/docs/zh/index.md
index cd67f0bc..e4ed42f1 100644
--- a/docs/zh/index.md
+++ b/docs/zh/index.md
@@ -29,7 +29,7 @@ keywords: Ultralytics, YOLOv8, 目标检测, 图像分割, 机器学习, 深度
- **安装** `ultralytics` 并通过 pip 在几分钟内开始运行 [:material-clock-fast: 开始使用](https://docs.ultralytics.com/quickstart/){ .md-button }
- **预测** 使用YOLOv8预测新的图像和视频 [:octicons-image-16: 在图像上预测](https://docs.ultralytics.com/predict/){ .md-button }
-- **训练** 在您自己的自定义数据集上训练新的YOLOv8模型 [:fontawesome-solid-brain: 训练模型](https://docs.ultralytics.com/train/){ .md-button }
+- **训练** 在您自己的自定义数据集上训练新的YOLOv8模型 [:fontawesome-solid-brain: 训练模型](https://docs.ultralytics.com/modes/train/){ .md-button }
- **探索** YOLOv8的任务,如分割、分类、姿态和跟踪 [:material-magnify-expand: 探索任务](https://docs.ultralytics.com/tasks/){ .md-button }
@@ -40,7 +40,7 @@ keywords: Ultralytics, YOLOv8, 目标检测, 图像分割, 机器学习, 深度
allowfullscreen>
- 观看: 在Google Colab中如何训练您的自定义数据集上的YOLOv8模型。
+ 观看: 在Google Colab中如何训练您的自定义数据集上的YOLOv8模型。