Add docformatter to pre-commit (#5279)

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: Burhan <62214284+Burhan-Q@users.noreply.github.com>
This commit is contained in:
Glenn Jocher 2023-10-09 02:25:22 +02:00 committed by GitHub
parent c7aa83da31
commit 7517667a33
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
90 changed files with 1396 additions and 497 deletions

View file

@ -1,7 +1,5 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
"""
Transformer modules
"""
"""Transformer modules."""
import math
@ -18,9 +16,10 @@ __all__ = ('TransformerEncoderLayer', 'TransformerLayer', 'TransformerBlock', 'M
class TransformerEncoderLayer(nn.Module):
"""Transformer Encoder."""
"""Defines a single layer of the transformer encoder."""
def __init__(self, c1, cm=2048, num_heads=8, dropout=0.0, act=nn.GELU(), normalize_before=False):
"""Initialize the TransformerEncoderLayer with specified parameters."""
super().__init__()
from ...utils.torch_utils import TORCH_1_9
if not TORCH_1_9:
@ -41,10 +40,11 @@ class TransformerEncoderLayer(nn.Module):
self.normalize_before = normalize_before
def with_pos_embed(self, tensor, pos=None):
"""Add position embeddings if given."""
"""Add position embeddings to the tensor if provided."""
return tensor if pos is None else tensor + pos
def forward_post(self, src, src_mask=None, src_key_padding_mask=None, pos=None):
"""Performs forward pass with post-normalization."""
q = k = self.with_pos_embed(src, pos)
src2 = self.ma(q, k, value=src, attn_mask=src_mask, key_padding_mask=src_key_padding_mask)[0]
src = src + self.dropout1(src2)
@ -54,6 +54,7 @@ class TransformerEncoderLayer(nn.Module):
return self.norm2(src)
def forward_pre(self, src, src_mask=None, src_key_padding_mask=None, pos=None):
"""Performs forward pass with pre-normalization."""
src2 = self.norm1(src)
q = k = self.with_pos_embed(src2, pos)
src2 = self.ma(q, k, value=src2, attn_mask=src_mask, key_padding_mask=src_key_padding_mask)[0]
@ -70,11 +71,14 @@ class TransformerEncoderLayer(nn.Module):
class AIFI(TransformerEncoderLayer):
"""Defines the AIFI transformer layer."""
def __init__(self, c1, cm=2048, num_heads=8, dropout=0, act=nn.GELU(), normalize_before=False):
"""Initialize the AIFI instance with specified parameters."""
super().__init__(c1, cm, num_heads, dropout, act, normalize_before)
def forward(self, x):
"""Forward pass for the AIFI transformer layer."""
c, h, w = x.shape[1:]
pos_embed = self.build_2d_sincos_position_embedding(w, h, c)
# flatten [B, C, H, W] to [B, HxW, C]
@ -82,7 +86,8 @@ class AIFI(TransformerEncoderLayer):
return x.permute(0, 2, 1).view([-1, c, h, w]).contiguous()
@staticmethod
def build_2d_sincos_position_embedding(w, h, embed_dim=256, temperature=10000.):
def build_2d_sincos_position_embedding(w, h, embed_dim=256, temperature=10000.0):
"""Builds 2D sine-cosine position embedding."""
grid_w = torch.arange(int(w), dtype=torch.float32)
grid_h = torch.arange(int(h), dtype=torch.float32)
grid_w, grid_h = torch.meshgrid(grid_w, grid_h, indexing='ij')
@ -140,27 +145,32 @@ class TransformerBlock(nn.Module):
class MLPBlock(nn.Module):
"""Implements a single block of a multi-layer perceptron."""
def __init__(self, embedding_dim, mlp_dim, act=nn.GELU):
"""Initialize the MLPBlock with specified embedding dimension, MLP dimension, and activation function."""
super().__init__()
self.lin1 = nn.Linear(embedding_dim, mlp_dim)
self.lin2 = nn.Linear(mlp_dim, embedding_dim)
self.act = act()
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""Forward pass for the MLPBlock."""
return self.lin2(self.act(self.lin1(x)))
class MLP(nn.Module):
""" Very simple multi-layer perceptron (also called FFN)"""
"""Implements a simple multi-layer perceptron (also called FFN)."""
def __init__(self, input_dim, hidden_dim, output_dim, num_layers):
"""Initialize the MLP with specified input, hidden, output dimensions and number of layers."""
super().__init__()
self.num_layers = num_layers
h = [hidden_dim] * (num_layers - 1)
self.layers = nn.ModuleList(nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim]))
def forward(self, x):
"""Forward pass for the entire MLP."""
for i, layer in enumerate(self.layers):
x = F.relu(layer(x)) if i < self.num_layers - 1 else layer(x)
return x
@ -168,17 +178,22 @@ class MLP(nn.Module):
class LayerNorm2d(nn.Module):
"""
LayerNorm2d module from https://github.com/facebookresearch/detectron2/blob/main/detectron2/layers/batch_norm.py
2D Layer Normalization module inspired by Detectron2 and ConvNeXt implementations.
Original implementation at
https://github.com/facebookresearch/detectron2/blob/main/detectron2/layers/batch_norm.py
https://github.com/facebookresearch/ConvNeXt/blob/d1fa8f6fef0a165b27399986cc2bdacc92777e40/models/convnext.py#L119
"""
def __init__(self, num_channels, eps=1e-6):
"""Initialize LayerNorm2d with the given parameters."""
super().__init__()
self.weight = nn.Parameter(torch.ones(num_channels))
self.bias = nn.Parameter(torch.zeros(num_channels))
self.eps = eps
def forward(self, x):
"""Perform forward pass for 2D layer normalization."""
u = x.mean(1, keepdim=True)
s = (x - u).pow(2).mean(1, keepdim=True)
x = (x - u) / torch.sqrt(s + self.eps)
@ -187,11 +202,13 @@ class LayerNorm2d(nn.Module):
class MSDeformAttn(nn.Module):
"""
Original Multi-Scale Deformable Attention Module.
Multi-Scale Deformable Attention Module based on Deformable-DETR and PaddleDetection implementations.
https://github.com/fundamentalvision/Deformable-DETR/blob/main/models/ops/modules/ms_deform_attn.py
"""
def __init__(self, d_model=256, n_levels=4, n_heads=8, n_points=4):
"""Initialize MSDeformAttn with the given parameters."""
super().__init__()
if d_model % n_heads != 0:
raise ValueError(f'd_model must be divisible by n_heads, but got {d_model} and {n_heads}')
@ -214,6 +231,7 @@ class MSDeformAttn(nn.Module):
self._reset_parameters()
def _reset_parameters(self):
"""Reset module parameters."""
constant_(self.sampling_offsets.weight.data, 0.)
thetas = torch.arange(self.n_heads, dtype=torch.float32) * (2.0 * math.pi / self.n_heads)
grid_init = torch.stack([thetas.cos(), thetas.sin()], -1)
@ -232,7 +250,10 @@ class MSDeformAttn(nn.Module):
def forward(self, query, refer_bbox, value, value_shapes, value_mask=None):
"""
Perform forward pass for multi-scale deformable attention.
https://github.com/PaddlePaddle/PaddleDetection/blob/develop/ppdet/modeling/transformers/deformable_transformer.py
Args:
query (torch.Tensor): [bs, query_length, C]
refer_bbox (torch.Tensor): [bs, query_length, n_levels, 2], range in [0, 1], top-left (0,0),
@ -272,24 +293,27 @@ class MSDeformAttn(nn.Module):
class DeformableTransformerDecoderLayer(nn.Module):
"""
Deformable Transformer Decoder Layer inspired by PaddleDetection and Deformable-DETR implementations.
https://github.com/PaddlePaddle/PaddleDetection/blob/develop/ppdet/modeling/transformers/deformable_transformer.py
https://github.com/fundamentalvision/Deformable-DETR/blob/main/models/deformable_transformer.py
"""
def __init__(self, d_model=256, n_heads=8, d_ffn=1024, dropout=0., act=nn.ReLU(), n_levels=4, n_points=4):
"""Initialize the DeformableTransformerDecoderLayer with the given parameters."""
super().__init__()
# self attention
# Self attention
self.self_attn = nn.MultiheadAttention(d_model, n_heads, dropout=dropout)
self.dropout1 = nn.Dropout(dropout)
self.norm1 = nn.LayerNorm(d_model)
# cross attention
# Cross attention
self.cross_attn = MSDeformAttn(d_model, n_levels, n_heads, n_points)
self.dropout2 = nn.Dropout(dropout)
self.norm2 = nn.LayerNorm(d_model)
# ffn
# FFN
self.linear1 = nn.Linear(d_model, d_ffn)
self.act = act
self.dropout3 = nn.Dropout(dropout)
@ -299,37 +323,44 @@ class DeformableTransformerDecoderLayer(nn.Module):
@staticmethod
def with_pos_embed(tensor, pos):
"""Add positional embeddings to the input tensor, if provided."""
return tensor if pos is None else tensor + pos
def forward_ffn(self, tgt):
"""Perform forward pass through the Feed-Forward Network part of the layer."""
tgt2 = self.linear2(self.dropout3(self.act(self.linear1(tgt))))
tgt = tgt + self.dropout4(tgt2)
return self.norm3(tgt)
def forward(self, embed, refer_bbox, feats, shapes, padding_mask=None, attn_mask=None, query_pos=None):
# self attention
"""Perform the forward pass through the entire decoder layer."""
# Self attention
q = k = self.with_pos_embed(embed, query_pos)
tgt = self.self_attn(q.transpose(0, 1), k.transpose(0, 1), embed.transpose(0, 1),
attn_mask=attn_mask)[0].transpose(0, 1)
embed = embed + self.dropout1(tgt)
embed = self.norm1(embed)
# cross attention
# Cross attention
tgt = self.cross_attn(self.with_pos_embed(embed, query_pos), refer_bbox.unsqueeze(2), feats, shapes,
padding_mask)
embed = embed + self.dropout2(tgt)
embed = self.norm2(embed)
# ffn
# FFN
return self.forward_ffn(embed)
class DeformableTransformerDecoder(nn.Module):
"""
Implementation of Deformable Transformer Decoder based on PaddleDetection.
https://github.com/PaddlePaddle/PaddleDetection/blob/develop/ppdet/modeling/transformers/deformable_transformer.py
"""
def __init__(self, hidden_dim, decoder_layer, num_layers, eval_idx=-1):
"""Initialize the DeformableTransformerDecoder with the given parameters."""
super().__init__()
self.layers = _get_clones(decoder_layer, num_layers)
self.num_layers = num_layers
@ -347,6 +378,7 @@ class DeformableTransformerDecoder(nn.Module):
pos_mlp,
attn_mask=None,
padding_mask=None):
"""Perform the forward pass through the entire decoder."""
output = embed
dec_bboxes = []
dec_cls = []