Add docformatter to pre-commit (#5279)

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: Burhan <62214284+Burhan-Q@users.noreply.github.com>
This commit is contained in:
Glenn Jocher 2023-10-09 02:25:22 +02:00 committed by GitHub
parent c7aa83da31
commit 7517667a33
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
90 changed files with 1396 additions and 497 deletions

View file

@ -47,6 +47,7 @@ class DETRLoss(nn.Module):
self.device = None
def _get_loss_class(self, pred_scores, targets, gt_scores, num_gts, postfix=''):
"""Computes the classification loss based on predictions, target values, and ground truth scores."""
# logits: [b, query, num_classes], gt_class: list[[n, 1]]
name_class = f'loss_class{postfix}'
bs, nq = pred_scores.shape[:2]
@ -68,6 +69,9 @@ class DETRLoss(nn.Module):
return {name_class: loss_cls.squeeze() * self.loss_gain['class']}
def _get_loss_bbox(self, pred_bboxes, gt_bboxes, postfix=''):
"""Calculates and returns the bounding box loss and GIoU loss for the predicted and ground truth bounding
boxes.
"""
# boxes: [b, query, 4], gt_bbox: list[[n, 4]]
name_bbox = f'loss_bbox{postfix}'
name_giou = f'loss_giou{postfix}'
@ -125,7 +129,7 @@ class DETRLoss(nn.Module):
postfix='',
masks=None,
gt_mask=None):
"""Get auxiliary losses"""
"""Get auxiliary losses."""
# NOTE: loss class, bbox, giou, mask, dice
loss = torch.zeros(5 if masks is not None else 3, device=pred_bboxes.device)
if match_indices is None and self.use_uni_match:
@ -166,12 +170,14 @@ class DETRLoss(nn.Module):
@staticmethod
def _get_index(match_indices):
"""Returns batch indices, source indices, and destination indices from provided match indices."""
batch_idx = torch.cat([torch.full_like(src, i) for i, (src, _) in enumerate(match_indices)])
src_idx = torch.cat([src for (src, _) in match_indices])
dst_idx = torch.cat([dst for (_, dst) in match_indices])
return (batch_idx, src_idx), dst_idx
def _get_assigned_bboxes(self, pred_bboxes, gt_bboxes, match_indices):
"""Assigns predicted bounding boxes to ground truth bounding boxes based on the match indices."""
pred_assigned = torch.cat([
t[I] if len(I) > 0 else torch.zeros(0, t.shape[-1], device=self.device)
for t, (I, _) in zip(pred_bboxes, match_indices)])
@ -190,7 +196,7 @@ class DETRLoss(nn.Module):
gt_mask=None,
postfix='',
match_indices=None):
"""Get losses"""
"""Get losses."""
if match_indices is None:
match_indices = self.matcher(pred_bboxes,
pred_scores,
@ -250,22 +256,43 @@ class DETRLoss(nn.Module):
class RTDETRDetectionLoss(DETRLoss):
"""
Real-Time DeepTracker (RT-DETR) Detection Loss class that extends the DETRLoss.
This class computes the detection loss for the RT-DETR model, which includes the standard detection loss as well as
an additional denoising training loss when provided with denoising metadata.
"""
def forward(self, preds, batch, dn_bboxes=None, dn_scores=None, dn_meta=None):
"""
Forward pass to compute the detection loss.
Args:
preds (tuple): Predicted bounding boxes and scores.
batch (dict): Batch data containing ground truth information.
dn_bboxes (torch.Tensor, optional): Denoising bounding boxes. Default is None.
dn_scores (torch.Tensor, optional): Denoising scores. Default is None.
dn_meta (dict, optional): Metadata for denoising. Default is None.
Returns:
(dict): Dictionary containing the total loss and, if applicable, the denoising loss.
"""
pred_bboxes, pred_scores = preds
total_loss = super().forward(pred_bboxes, pred_scores, batch)
# Check for denoising metadata to compute denoising training loss
if dn_meta is not None:
dn_pos_idx, dn_num_group = dn_meta['dn_pos_idx'], dn_meta['dn_num_group']
assert len(batch['gt_groups']) == len(dn_pos_idx)
# Denoising match indices
# Get the match indices for denoising
match_indices = self.get_dn_match_indices(dn_pos_idx, dn_num_group, batch['gt_groups'])
# Compute denoising training loss
# Compute the denoising training loss
dn_loss = super().forward(dn_bboxes, dn_scores, batch, postfix='_dn', match_indices=match_indices)
total_loss.update(dn_loss)
else:
# If no denoising metadata is provided, set denoising loss to zero
total_loss.update({f'{k}_dn': torch.tensor(0., device=self.device) for k in total_loss.keys()})
return total_loss
@ -276,12 +303,12 @@ class RTDETRDetectionLoss(DETRLoss):
Get the match indices for denoising.
Args:
dn_pos_idx (List[torch.Tensor]): A list includes positive indices of denoising.
dn_num_group (int): The number of groups of denoising.
gt_groups (List(int)): a list of batch size length includes the number of gts of each image.
dn_pos_idx (List[torch.Tensor]): List of tensors containing positive indices for denoising.
dn_num_group (int): Number of denoising groups.
gt_groups (List[int]): List of integers representing the number of ground truths for each image.
Returns:
dn_match_indices (List(tuple)): Matched indices.
(List[tuple]): List of tuples containing matched indices for denoising.
"""
dn_match_indices = []
idx_groups = torch.as_tensor([0, *gt_groups[:-1]]).cumsum_(0)