Add docformatter to pre-commit (#5279)

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: Burhan <62214284+Burhan-Q@users.noreply.github.com>
This commit is contained in:
Glenn Jocher 2023-10-09 02:25:22 +02:00 committed by GitHub
parent c7aa83da31
commit 7517667a33
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
90 changed files with 1396 additions and 497 deletions

View file

@ -15,6 +15,7 @@ from ultralytics.utils import TQDM
class FastSAMPrompt:
def __init__(self, source, results, device='cuda') -> None:
"""Initializes FastSAMPrompt with given source, results and device, and assigns clip for linear assignment."""
self.device = device
self.results = results
self.source = source
@ -30,6 +31,7 @@ class FastSAMPrompt:
@staticmethod
def _segment_image(image, bbox):
"""Segments the given image according to the provided bounding box coordinates."""
image_array = np.array(image)
segmented_image_array = np.zeros_like(image_array)
x1, y1, x2, y2 = bbox
@ -45,6 +47,9 @@ class FastSAMPrompt:
@staticmethod
def _format_results(result, filter=0):
"""Formats detection results into list of annotations each containing ID, segmentation, bounding box, score and
area.
"""
annotations = []
n = len(result.masks.data) if result.masks is not None else 0
for i in range(n):
@ -61,6 +66,9 @@ class FastSAMPrompt:
@staticmethod
def _get_bbox_from_mask(mask):
"""Applies morphological transformations to the mask, displays it, and if with_contours is True, draws
contours.
"""
mask = mask.astype(np.uint8)
contours, hierarchy = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
x1, y1, w, h = cv2.boundingRect(contours[0])
@ -195,6 +203,7 @@ class FastSAMPrompt:
@torch.no_grad()
def retrieve(self, model, preprocess, elements, search_text: str, device) -> int:
"""Processes images and text with a model, calculates similarity, and returns softmax score."""
preprocessed_images = [preprocess(image).to(device) for image in elements]
tokenized_text = self.clip.tokenize([search_text]).to(device)
stacked_images = torch.stack(preprocessed_images)
@ -206,6 +215,7 @@ class FastSAMPrompt:
return probs[:, 0].softmax(dim=0)
def _crop_image(self, format_results):
"""Crops an image based on provided annotation format and returns cropped images and related data."""
if os.path.isdir(self.source):
raise ValueError(f"'{self.source}' is a directory, not a valid source for this function.")
image = Image.fromarray(cv2.cvtColor(self.results[0].orig_img, cv2.COLOR_BGR2RGB))
@ -229,6 +239,7 @@ class FastSAMPrompt:
return cropped_boxes, cropped_images, not_crop, filter_id, annotations
def box_prompt(self, bbox):
"""Modifies the bounding box properties and calculates IoU between masks and bounding box."""
if self.results[0].masks is not None:
assert (bbox[2] != 0 and bbox[3] != 0)
if os.path.isdir(self.source):
@ -261,7 +272,8 @@ class FastSAMPrompt:
self.results[0].masks.data = torch.tensor(np.array([masks[max_iou_index].cpu().numpy()]))
return self.results
def point_prompt(self, points, pointlabel): # numpy 处理
def point_prompt(self, points, pointlabel): # numpy
"""Adjusts points on detected masks based on user input and returns the modified results."""
if self.results[0].masks is not None:
if os.path.isdir(self.source):
raise ValueError(f"'{self.source}' is a directory, not a valid source for this function.")
@ -284,6 +296,7 @@ class FastSAMPrompt:
return self.results
def text_prompt(self, text):
"""Processes a text prompt, applies it to existing results and returns the updated results."""
if self.results[0].masks is not None:
format_results = self._format_results(self.results[0], 0)
cropped_boxes, cropped_images, not_crop, filter_id, annotations = self._crop_image(format_results)
@ -296,4 +309,5 @@ class FastSAMPrompt:
return self.results
def everything_prompt(self):
"""Returns the processed results from the previous methods in the class."""
return self.results