Add docformatter to pre-commit (#5279)

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: Burhan <62214284+Burhan-Q@users.noreply.github.com>
This commit is contained in:
Glenn Jocher 2023-10-09 02:25:22 +02:00 committed by GitHub
parent c7aa83da31
commit 7517667a33
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
90 changed files with 1396 additions and 497 deletions

View file

@ -33,6 +33,7 @@ class YOLODataset(BaseDataset):
"""
def __init__(self, *args, data=None, use_segments=False, use_keypoints=False, **kwargs):
"""Initializes the YOLODataset with optional configurations for segments and keypoints."""
self.use_segments = use_segments
self.use_keypoints = use_keypoints
self.data = data
@ -40,7 +41,9 @@ class YOLODataset(BaseDataset):
super().__init__(*args, **kwargs)
def cache_labels(self, path=Path('./labels.cache')):
"""Cache dataset labels, check images and read shapes.
"""
Cache dataset labels, check images and read shapes.
Args:
path (Path): path where to save the cache file (default: Path('./labels.cache')).
Returns:
@ -157,7 +160,7 @@ class YOLODataset(BaseDataset):
self.transforms = self.build_transforms(hyp)
def update_labels_info(self, label):
"""custom your label format here."""
"""Custom your label format here."""
# NOTE: cls is not with bboxes now, classification and semantic segmentation need an independent cls label
# we can make it also support classification and semantic segmentation by add or remove some dict keys there.
bboxes = label.pop('bboxes')
@ -254,6 +257,7 @@ class ClassificationDataset(torchvision.datasets.ImageFolder):
return {'img': sample, 'cls': j}
def __len__(self) -> int:
"""Return the total number of samples in the dataset."""
return len(self.samples)
def verify_images(self):
@ -320,6 +324,16 @@ def save_dataset_cache_file(prefix, path, x):
# TODO: support semantic segmentation
class SemanticDataset(BaseDataset):
"""
Semantic Segmentation Dataset.
This class is responsible for handling datasets used for semantic segmentation tasks. It inherits functionalities
from the BaseDataset class.
Note:
This class is currently a placeholder and needs to be populated with methods and attributes for supporting
semantic segmentation tasks.
"""
def __init__(self):
"""Initialize a SemanticDataset object."""