Add docformatter to pre-commit (#5279)

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: Burhan <62214284+Burhan-Q@users.noreply.github.com>
This commit is contained in:
Glenn Jocher 2023-10-09 02:25:22 +02:00 committed by GitHub
parent c7aa83da31
commit 7517667a33
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
90 changed files with 1396 additions and 497 deletions

View file

@ -20,16 +20,30 @@ from .utils import polygons2masks, polygons2masks_overlap
# TODO: we might need a BaseTransform to make all these augments be compatible with both classification and semantic
class BaseTransform:
"""
Base class for image transformations.
This is a generic transformation class that can be extended for specific image processing needs.
The class is designed to be compatible with both classification and semantic segmentation tasks.
Methods:
__init__: Initializes the BaseTransform object.
apply_image: Applies image transformation to labels.
apply_instances: Applies transformations to object instances in labels.
apply_semantic: Applies semantic segmentation to an image.
__call__: Applies all label transformations to an image, instances, and semantic masks.
"""
def __init__(self) -> None:
"""Initializes the BaseTransform object."""
pass
def apply_image(self, labels):
"""Applies image transformation to labels."""
"""Applies image transformations to labels."""
pass
def apply_instances(self, labels):
"""Applies transformations to input 'labels' and returns object instances."""
"""Applies transformations to object instances in labels."""
pass
def apply_semantic(self, labels):
@ -37,13 +51,14 @@ class BaseTransform:
pass
def __call__(self, labels):
"""Applies label transformations to an image, instances and semantic masks."""
"""Applies all label transformations to an image, instances, and semantic masks."""
self.apply_image(labels)
self.apply_instances(labels)
self.apply_semantic(labels)
class Compose:
"""Class for composing multiple image transformations."""
def __init__(self, transforms):
"""Initializes the Compose object with a list of transforms."""
@ -60,18 +75,23 @@ class Compose:
self.transforms.append(transform)
def tolist(self):
"""Converts list of transforms to a standard Python list."""
"""Converts the list of transforms to a standard Python list."""
return self.transforms
def __repr__(self):
"""Return string representation of object."""
"""Returns a string representation of the object."""
return f"{self.__class__.__name__}({', '.join([f'{t}' for t in self.transforms])})"
class BaseMixTransform:
"""This implementation is from mmyolo."""
"""
Class for base mix (MixUp/Mosaic) transformations.
This implementation is from mmyolo.
"""
def __init__(self, dataset, pre_transform=None, p=0.0) -> None:
"""Initializes the BaseMixTransform object with dataset, pre_transform, and probability."""
self.dataset = dataset
self.pre_transform = pre_transform
self.p = p
@ -262,8 +282,10 @@ class Mosaic(BaseMixTransform):
class MixUp(BaseMixTransform):
"""Class for applying MixUp augmentation to the dataset."""
def __init__(self, dataset, pre_transform=None, p=0.0) -> None:
"""Initializes MixUp object with dataset, pre_transform, and probability of applying MixUp."""
super().__init__(dataset=dataset, pre_transform=pre_transform, p=p)
def get_indexes(self):
@ -271,7 +293,7 @@ class MixUp(BaseMixTransform):
return random.randint(0, len(self.dataset) - 1)
def _mix_transform(self, labels):
"""Applies MixUp augmentation https://arxiv.org/pdf/1710.09412.pdf."""
"""Applies MixUp augmentation as per https://arxiv.org/pdf/1710.09412.pdf."""
r = np.random.beta(32.0, 32.0) # mixup ratio, alpha=beta=32.0
labels2 = labels['mix_labels'][0]
labels['img'] = (labels['img'] * r + labels2['img'] * (1 - r)).astype(np.uint8)
@ -281,6 +303,28 @@ class MixUp(BaseMixTransform):
class RandomPerspective:
"""
Implements random perspective and affine transformations on images and corresponding bounding boxes, segments, and
keypoints. These transformations include rotation, translation, scaling, and shearing. The class also offers the
option to apply these transformations conditionally with a specified probability.
Attributes:
degrees (float): Degree range for random rotations.
translate (float): Fraction of total width and height for random translation.
scale (float): Scaling factor interval, e.g., a scale factor of 0.1 allows a resize between 90%-110%.
shear (float): Shear intensity (angle in degrees).
perspective (float): Perspective distortion factor.
border (tuple): Tuple specifying mosaic border.
pre_transform (callable): A function/transform to apply to the image before starting the random transformation.
Methods:
affine_transform(img, border): Applies a series of affine transformations to the image.
apply_bboxes(bboxes, M): Transforms bounding boxes using the calculated affine matrix.
apply_segments(segments, M): Transforms segments and generates new bounding boxes.
apply_keypoints(keypoints, M): Transforms keypoints.
__call__(labels): Main method to apply transformations to both images and their corresponding annotations.
box_candidates(box1, box2): Filters out bounding boxes that don't meet certain criteria post-transformation.
"""
def __init__(self,
degrees=0.0,
@ -290,17 +334,31 @@ class RandomPerspective:
perspective=0.0,
border=(0, 0),
pre_transform=None):
"""Initializes RandomPerspective object with transformation parameters."""
self.degrees = degrees
self.translate = translate
self.scale = scale
self.shear = shear
self.perspective = perspective
# Mosaic border
self.border = border
self.border = border # mosaic border
self.pre_transform = pre_transform
def affine_transform(self, img, border):
"""Center."""
"""
Applies a sequence of affine transformations centered around the image center.
Args:
img (ndarray): Input image.
border (tuple): Border dimensions.
Returns:
img (ndarray): Transformed image.
M (ndarray): Transformation matrix.
s (float): Scale factor.
"""
# Center
C = np.eye(3, dtype=np.float32)
C[0, 2] = -img.shape[1] / 2 # x translation (pixels)
@ -462,8 +520,22 @@ class RandomPerspective:
labels['resized_shape'] = img.shape[:2]
return labels
def box_candidates(self, box1, box2, wh_thr=2, ar_thr=100, area_thr=0.1, eps=1e-16): # box1(4,n), box2(4,n)
# Compute box candidates: box1 before augment, box2 after augment, wh_thr (pixels), aspect_ratio_thr, area_ratio
def box_candidates(self, box1, box2, wh_thr=2, ar_thr=100, area_thr=0.1, eps=1e-16):
"""
Compute box candidates based on a set of thresholds. This method compares the characteristics of the boxes
before and after augmentation to decide whether a box is a candidate for further processing.
Args:
box1 (numpy.ndarray): The 4,n bounding box before augmentation, represented as [x1, y1, x2, y2].
box2 (numpy.ndarray): The 4,n bounding box after augmentation, represented as [x1, y1, x2, y2].
wh_thr (float, optional): The width and height threshold in pixels. Default is 2.
ar_thr (float, optional): The aspect ratio threshold. Default is 100.
area_thr (float, optional): The area ratio threshold. Default is 0.1.
eps (float, optional): A small epsilon value to prevent division by zero. Default is 1e-16.
Returns:
(numpy.ndarray): A boolean array indicating which boxes are candidates based on the given thresholds.
"""
w1, h1 = box1[2] - box1[0], box1[3] - box1[1]
w2, h2 = box2[2] - box2[0], box2[3] - box2[1]
ar = np.maximum(w2 / (h2 + eps), h2 / (w2 + eps)) # aspect ratio
@ -471,14 +543,32 @@ class RandomPerspective:
class RandomHSV:
"""
This class is responsible for performing random adjustments to the Hue, Saturation, and Value (HSV) channels of an
image.
The adjustments are random but within limits set by hgain, sgain, and vgain.
"""
def __init__(self, hgain=0.5, sgain=0.5, vgain=0.5) -> None:
"""
Initialize RandomHSV class with gains for each HSV channel.
Args:
hgain (float, optional): Maximum variation for hue. Default is 0.5.
sgain (float, optional): Maximum variation for saturation. Default is 0.5.
vgain (float, optional): Maximum variation for value. Default is 0.5.
"""
self.hgain = hgain
self.sgain = sgain
self.vgain = vgain
def __call__(self, labels):
"""Applies image HSV augmentation"""
"""
Applies random HSV augmentation to an image within the predefined limits.
The modified image replaces the original image in the input 'labels' dict.
"""
img = labels['img']
if self.hgain or self.sgain or self.vgain:
r = np.random.uniform(-1, 1, 3) * [self.hgain, self.sgain, self.vgain] + 1 # random gains
@ -496,9 +586,22 @@ class RandomHSV:
class RandomFlip:
"""Applies random horizontal or vertical flip to an image with a given probability."""
"""
Applies a random horizontal or vertical flip to an image with a given probability.
Also updates any instances (bounding boxes, keypoints, etc.) accordingly.
"""
def __init__(self, p=0.5, direction='horizontal', flip_idx=None) -> None:
"""
Initializes the RandomFlip class with probability and direction.
Args:
p (float, optional): The probability of applying the flip. Must be between 0 and 1. Default is 0.5.
direction (str, optional): The direction to apply the flip. Must be 'horizontal' or 'vertical'.
Default is 'horizontal'.
flip_idx (array-like, optional): Index mapping for flipping keypoints, if any.
"""
assert direction in ['horizontal', 'vertical'], f'Support direction `horizontal` or `vertical`, got {direction}'
assert 0 <= p <= 1.0
@ -507,7 +610,16 @@ class RandomFlip:
self.flip_idx = flip_idx
def __call__(self, labels):
"""Resize image and padding for detection, instance segmentation, pose."""
"""
Applies random flip to an image and updates any instances like bounding boxes or keypoints accordingly.
Args:
labels (dict): A dictionary containing the keys 'img' and 'instances'. 'img' is the image to be flipped.
'instances' is an object containing bounding boxes and optionally keypoints.
Returns:
(dict): The same dict with the flipped image and updated instances under the 'img' and 'instances' keys.
"""
img = labels['img']
instances = labels.pop('instances')
instances.convert_bbox(format='xywh')
@ -599,12 +711,38 @@ class LetterBox:
class CopyPaste:
"""
Implements the Copy-Paste augmentation as described in the paper https://arxiv.org/abs/2012.07177. This class is
responsible for applying the Copy-Paste augmentation on images and their corresponding instances.
"""
def __init__(self, p=0.5) -> None:
"""
Initializes the CopyPaste class with a given probability.
Args:
p (float, optional): The probability of applying the Copy-Paste augmentation. Must be between 0 and 1.
Default is 0.5.
"""
self.p = p
def __call__(self, labels):
"""Implement Copy-Paste augmentation https://arxiv.org/abs/2012.07177, labels as nx5 np.array(cls, xyxy)."""
"""
Applies the Copy-Paste augmentation to the given image and instances.
Args:
labels (dict): A dictionary containing:
- 'img': The image to augment.
- 'cls': Class labels associated with the instances.
- 'instances': Object containing bounding boxes, and optionally, keypoints and segments.
Returns:
(dict): Dict with augmented image and updated instances under the 'img', 'cls', and 'instances' keys.
Notes:
1. Instances are expected to have 'segments' as one of their attributes for this augmentation to work.
2. This method modifies the input dictionary 'labels' in place.
"""
im = labels['img']
cls = labels['cls']
h, w = im.shape[:2]
@ -639,9 +777,13 @@ class CopyPaste:
class Albumentations:
"""Albumentations transformations. Optional, uninstall package to disable.
Applies Blur, Median Blur, convert to grayscale, Contrast Limited Adaptive Histogram Equalization,
random change of brightness and contrast, RandomGamma and lowering of image quality by compression."""
"""
Albumentations transformations.
Optional, uninstall package to disable. Applies Blur, Median Blur, convert to grayscale, Contrast Limited Adaptive
Histogram Equalization, random change of brightness and contrast, RandomGamma and lowering of image quality by
compression.
"""
def __init__(self, p=1.0):
"""Initialize the transform object for YOLO bbox formatted params."""
@ -690,6 +832,19 @@ class Albumentations:
# TODO: technically this is not an augmentation, maybe we should put this to another files
class Format:
"""
Formats image annotations for object detection, instance segmentation, and pose estimation tasks. The class
standardizes the image and instance annotations to be used by the `collate_fn` in PyTorch DataLoader.
Attributes:
bbox_format (str): Format for bounding boxes. Default is 'xywh'.
normalize (bool): Whether to normalize bounding boxes. Default is True.
return_mask (bool): Return instance masks for segmentation. Default is False.
return_keypoint (bool): Return keypoints for pose estimation. Default is False.
mask_ratio (int): Downsample ratio for masks. Default is 4.
mask_overlap (bool): Whether to overlap masks. Default is True.
batch_idx (bool): Keep batch indexes. Default is True.
"""
def __init__(self,
bbox_format='xywh',
@ -699,6 +854,7 @@ class Format:
mask_ratio=4,
mask_overlap=True,
batch_idx=True):
"""Initializes the Format class with given parameters."""
self.bbox_format = bbox_format
self.normalize = normalize
self.return_mask = return_mask # set False when training detection only
@ -746,7 +902,7 @@ class Format:
return img
def _format_segments(self, instances, cls, w, h):
"""convert polygon points to bitmap."""
"""Convert polygon points to bitmap."""
segments = instances.segments
if self.mask_overlap:
masks, sorted_idx = polygons2masks_overlap((h, w), segments, downsample_ratio=self.mask_ratio)
@ -851,35 +1007,75 @@ def classify_albumentations(
class ClassifyLetterBox:
"""YOLOv8 LetterBox class for image preprocessing, i.e. T.Compose([LetterBox(size), ToTensor()])"""
"""
YOLOv8 LetterBox class for image preprocessing, designed to be part of a transformation pipeline, e.g.,
T.Compose([LetterBox(size), ToTensor()]).
Attributes:
h (int): Target height of the image.
w (int): Target width of the image.
auto (bool): If True, automatically solves for short side using stride.
stride (int): The stride value, used when 'auto' is True.
"""
def __init__(self, size=(640, 640), auto=False, stride=32):
"""Resizes image and crops it to center with max dimensions 'h' and 'w'."""
"""
Initializes the ClassifyLetterBox class with a target size, auto-flag, and stride.
Args:
size (Union[int, Tuple[int, int]]): The target dimensions (height, width) for the letterbox.
auto (bool): If True, automatically calculates the short side based on stride.
stride (int): The stride value, used when 'auto' is True.
"""
super().__init__()
self.h, self.w = (size, size) if isinstance(size, int) else size
self.auto = auto # pass max size integer, automatically solve for short side using stride
self.stride = stride # used with auto
def __call__(self, im): # im = np.array HWC
def __call__(self, im):
"""
Resizes the image and pads it with a letterbox method.
Args:
im (numpy.ndarray): The input image as a numpy array of shape HWC.
Returns:
(numpy.ndarray): The letterboxed and resized image as a numpy array.
"""
imh, imw = im.shape[:2]
r = min(self.h / imh, self.w / imw) # ratio of new/old
h, w = round(imh * r), round(imw * r) # resized image
r = min(self.h / imh, self.w / imw) # ratio of new/old dimensions
h, w = round(imh * r), round(imw * r) # resized image dimensions
# Calculate padding dimensions
hs, ws = (math.ceil(x / self.stride) * self.stride for x in (h, w)) if self.auto else (self.h, self.w)
top, left = round((hs - h) / 2 - 0.1), round((ws - w) / 2 - 0.1)
# Create padded image
im_out = np.full((hs, ws, 3), 114, dtype=im.dtype)
im_out[top:top + h, left:left + w] = cv2.resize(im, (w, h), interpolation=cv2.INTER_LINEAR)
return im_out
class CenterCrop:
"""YOLOv8 CenterCrop class for image preprocessing, i.e. T.Compose([CenterCrop(size), ToTensor()])"""
"""YOLOv8 CenterCrop class for image preprocessing, designed to be part of a transformation pipeline, e.g.,
T.Compose([CenterCrop(size), ToTensor()]).
"""
def __init__(self, size=640):
"""Converts an image from numpy array to PyTorch tensor."""
super().__init__()
self.h, self.w = (size, size) if isinstance(size, int) else size
def __call__(self, im): # im = np.array HWC
def __call__(self, im):
"""
Resizes and crops the center of the image using a letterbox method.
Args:
im (numpy.ndarray): The input image as a numpy array of shape HWC.
Returns:
(numpy.ndarray): The center-cropped and resized image as a numpy array.
"""
imh, imw = im.shape[:2]
m = min(imh, imw) # min dimension
top, left = (imh - m) // 2, (imw - m) // 2
@ -887,14 +1083,23 @@ class CenterCrop:
class ToTensor:
"""YOLOv8 ToTensor class for image preprocessing, i.e. T.Compose([LetterBox(size), ToTensor()])."""
"""YOLOv8 ToTensor class for image preprocessing, i.e., T.Compose([LetterBox(size), ToTensor()])."""
def __init__(self, half=False):
"""Initialize YOLOv8 ToTensor object with optional half-precision support."""
super().__init__()
self.half = half
def __call__(self, im): # im = np.array HWC in BGR order
def __call__(self, im):
"""
Transforms an image from a numpy array to a PyTorch tensor, applying optional half-precision and normalization.
Args:
im (numpy.ndarray): Input image as a numpy array with shape (H, W, C) in BGR order.
Returns:
(torch.Tensor): The transformed image as a PyTorch tensor in float32 or float16, normalized to [0, 1].
"""
im = np.ascontiguousarray(im.transpose((2, 0, 1))[::-1]) # HWC to CHW -> BGR to RGB -> contiguous
im = torch.from_numpy(im) # to torch
im = im.half() if self.half else im.float() # uint8 to fp16/32

View file

@ -62,6 +62,7 @@ class BaseDataset(Dataset):
classes=None,
fraction=1.0):
super().__init__()
"""Initialize BaseDataset with given configuration and options."""
self.img_path = img_path
self.imgsz = imgsz
self.augment = augment
@ -256,7 +257,7 @@ class BaseDataset(Dataset):
return len(self.labels)
def update_labels_info(self, label):
"""custom your label format here."""
"""Custom your label format here."""
return label
def build_transforms(self, hyp=None):

View file

@ -20,7 +20,11 @@ from .utils import PIN_MEMORY
class InfiniteDataLoader(dataloader.DataLoader):
"""Dataloader that reuses workers. Uses same syntax as vanilla DataLoader."""
"""
Dataloader that reuses workers.
Uses same syntax as vanilla DataLoader.
"""
def __init__(self, *args, **kwargs):
"""Dataloader that infinitely recycles workers, inherits from DataLoader."""
@ -38,7 +42,9 @@ class InfiniteDataLoader(dataloader.DataLoader):
yield next(self.iterator)
def reset(self):
"""Reset iterator.
"""
Reset iterator.
This is useful when we want to modify settings of dataset while training.
"""
self.iterator = self._get_iterator()
@ -70,7 +76,7 @@ def seed_worker(worker_id): # noqa
def build_yolo_dataset(cfg, img_path, batch, data, mode='train', rect=False, stride=32):
"""Build YOLO Dataset"""
"""Build YOLO Dataset."""
return YOLODataset(
img_path=img_path,
imgsz=cfg.imgsz,

View file

@ -12,7 +12,8 @@ from ultralytics.utils import TQDM
def coco91_to_coco80_class():
"""Converts 91-index COCO class IDs to 80-index COCO class IDs.
"""
Converts 91-index COCO class IDs to 80-index COCO class IDs.
Returns:
(list): A list of 91 class IDs where the index represents the 80-index class ID and the value is the
@ -51,7 +52,8 @@ def convert_coco(labels_dir='../coco/annotations/',
use_segments=False,
use_keypoints=False,
cls91to80=True):
"""Converts COCO dataset annotations to a format suitable for training YOLOv5 models.
"""
Converts COCO dataset annotations to a format suitable for training YOLOv5 models.
Args:
labels_dir (str, optional): Path to directory containing COCO dataset annotation files.
@ -203,6 +205,7 @@ def convert_dota_to_yolo_obb(dota_root_path: str):
'helipad': 17}
def convert_label(image_name, image_width, image_height, orig_label_dir, save_dir):
"""Converts a single image's DOTA annotation to YOLO OBB format and saves it to a specified directory."""
orig_label_path = orig_label_dir / f'{image_name}.txt'
save_path = save_dir / f'{image_name}.txt'

View file

@ -33,6 +33,7 @@ class YOLODataset(BaseDataset):
"""
def __init__(self, *args, data=None, use_segments=False, use_keypoints=False, **kwargs):
"""Initializes the YOLODataset with optional configurations for segments and keypoints."""
self.use_segments = use_segments
self.use_keypoints = use_keypoints
self.data = data
@ -40,7 +41,9 @@ class YOLODataset(BaseDataset):
super().__init__(*args, **kwargs)
def cache_labels(self, path=Path('./labels.cache')):
"""Cache dataset labels, check images and read shapes.
"""
Cache dataset labels, check images and read shapes.
Args:
path (Path): path where to save the cache file (default: Path('./labels.cache')).
Returns:
@ -157,7 +160,7 @@ class YOLODataset(BaseDataset):
self.transforms = self.build_transforms(hyp)
def update_labels_info(self, label):
"""custom your label format here."""
"""Custom your label format here."""
# NOTE: cls is not with bboxes now, classification and semantic segmentation need an independent cls label
# we can make it also support classification and semantic segmentation by add or remove some dict keys there.
bboxes = label.pop('bboxes')
@ -254,6 +257,7 @@ class ClassificationDataset(torchvision.datasets.ImageFolder):
return {'img': sample, 'cls': j}
def __len__(self) -> int:
"""Return the total number of samples in the dataset."""
return len(self.samples)
def verify_images(self):
@ -320,6 +324,16 @@ def save_dataset_cache_file(prefix, path, x):
# TODO: support semantic segmentation
class SemanticDataset(BaseDataset):
"""
Semantic Segmentation Dataset.
This class is responsible for handling datasets used for semantic segmentation tasks. It inherits functionalities
from the BaseDataset class.
Note:
This class is currently a placeholder and needs to be populated with methods and attributes for supporting
semantic segmentation tasks.
"""
def __init__(self):
"""Initialize a SemanticDataset object."""

View file

@ -22,6 +22,7 @@ from ultralytics.utils.checks import check_requirements
@dataclass
class SourceTypes:
"""Class to represent various types of input sources for predictions."""
webcam: bool = False
screenshot: bool = False
from_img: bool = False
@ -29,7 +30,34 @@ class SourceTypes:
class LoadStreams:
"""Stream Loader, i.e. `yolo predict source='rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP, TCP streams`."""
"""
Stream Loader for various types of video streams.
Suitable for use with `yolo predict source='rtsp://example.com/media.mp4'`, supports RTSP, RTMP, HTTP, and TCP streams.
Attributes:
sources (str): The source input paths or URLs for the video streams.
imgsz (int): The image size for processing, defaults to 640.
vid_stride (int): Video frame-rate stride, defaults to 1.
buffer (bool): Whether to buffer input streams, defaults to False.
running (bool): Flag to indicate if the streaming thread is running.
mode (str): Set to 'stream' indicating real-time capture.
imgs (list): List of image frames for each stream.
fps (list): List of FPS for each stream.
frames (list): List of total frames for each stream.
threads (list): List of threads for each stream.
shape (list): List of shapes for each stream.
caps (list): List of cv2.VideoCapture objects for each stream.
bs (int): Batch size for processing.
Methods:
__init__: Initialize the stream loader.
update: Read stream frames in daemon thread.
close: Close stream loader and release resources.
__iter__: Returns an iterator object for the class.
__next__: Returns source paths, transformed, and original images for processing.
__len__: Return the length of the sources object.
"""
def __init__(self, sources='file.streams', imgsz=640, vid_stride=1, buffer=False):
"""Initialize instance variables and check for consistent input stream shapes."""
@ -149,10 +177,33 @@ class LoadStreams:
class LoadScreenshots:
"""YOLOv8 screenshot dataloader, i.e. `yolo predict source=screen`."""
"""
YOLOv8 screenshot dataloader.
This class manages the loading of screenshot images for processing with YOLOv8.
Suitable for use with `yolo predict source=screen`.
Attributes:
source (str): The source input indicating which screen to capture.
imgsz (int): The image size for processing, defaults to 640.
screen (int): The screen number to capture.
left (int): The left coordinate for screen capture area.
top (int): The top coordinate for screen capture area.
width (int): The width of the screen capture area.
height (int): The height of the screen capture area.
mode (str): Set to 'stream' indicating real-time capture.
frame (int): Counter for captured frames.
sct (mss.mss): Screen capture object from `mss` library.
bs (int): Batch size, set to 1.
monitor (dict): Monitor configuration details.
Methods:
__iter__: Returns an iterator object.
__next__: Captures the next screenshot and returns it.
"""
def __init__(self, source, imgsz=640):
"""source = [screen_number left top width height] (pixels)."""
"""Source = [screen_number left top width height] (pixels)."""
check_requirements('mss')
import mss # noqa
@ -192,7 +243,28 @@ class LoadScreenshots:
class LoadImages:
"""YOLOv8 image/video dataloader, i.e. `yolo predict source=image.jpg/vid.mp4`."""
"""
YOLOv8 image/video dataloader.
This class manages the loading and pre-processing of image and video data for YOLOv8. It supports loading from
various formats, including single image files, video files, and lists of image and video paths.
Attributes:
imgsz (int): Image size, defaults to 640.
files (list): List of image and video file paths.
nf (int): Total number of files (images and videos).
video_flag (list): Flags indicating whether a file is a video (True) or an image (False).
mode (str): Current mode, 'image' or 'video'.
vid_stride (int): Stride for video frame-rate, defaults to 1.
bs (int): Batch size, set to 1 for this class.
cap (cv2.VideoCapture): Video capture object for OpenCV.
frame (int): Frame counter for video.
frames (int): Total number of frames in the video.
count (int): Counter for iteration, initialized at 0 during `__iter__()`.
Methods:
_new_video(path): Create a new cv2.VideoCapture object for a given video path.
"""
def __init__(self, path, imgsz=640, vid_stride=1):
"""Initialize the Dataloader and raise FileNotFoundError if file not found."""
@ -285,6 +357,24 @@ class LoadImages:
class LoadPilAndNumpy:
"""
Load images from PIL and Numpy arrays for batch processing.
This class is designed to manage loading and pre-processing of image data from both PIL and Numpy formats.
It performs basic validation and format conversion to ensure that the images are in the required format for
downstream processing.
Attributes:
paths (list): List of image paths or autogenerated filenames.
im0 (list): List of images stored as Numpy arrays.
imgsz (int): Image size, defaults to 640.
mode (str): Type of data being processed, defaults to 'image'.
bs (int): Batch size, equivalent to the length of `im0`.
count (int): Counter for iteration, initialized at 0 during `__iter__()`.
Methods:
_single_check(im): Validate and format a single image to a Numpy array.
"""
def __init__(self, im0, imgsz=640):
"""Initialize PIL and Numpy Dataloader."""
@ -326,8 +416,24 @@ class LoadPilAndNumpy:
class LoadTensor:
"""
Load images from torch.Tensor data.
This class manages the loading and pre-processing of image data from PyTorch tensors for further processing.
Attributes:
im0 (torch.Tensor): The input tensor containing the image(s).
bs (int): Batch size, inferred from the shape of `im0`.
mode (str): Current mode, set to 'image'.
paths (list): List of image paths or filenames.
count (int): Counter for iteration, initialized at 0 during `__iter__()`.
Methods:
_single_check(im, stride): Validate and possibly modify the input tensor.
"""
def __init__(self, im0) -> None:
"""Initialize Tensor Dataloader."""
self.im0 = self._single_check(im0)
self.bs = self.im0.shape[0]
self.mode = 'image'
@ -370,9 +476,7 @@ class LoadTensor:
def autocast_list(source):
"""
Merges a list of source of different types into a list of numpy arrays or PIL images
"""
"""Merges a list of source of different types into a list of numpy arrays or PIL images."""
files = []
for im in source:
if isinstance(im, (str, Path)): # filename or uri

View file

@ -547,9 +547,9 @@ class HUBDatasetStats:
def compress_one_image(f, f_new=None, max_dim=1920, quality=50):
"""
Compresses a single image file to reduced size while preserving its aspect ratio and quality using either the
Python Imaging Library (PIL) or OpenCV library. If the input image is smaller than the maximum dimension, it will
not be resized.
Compresses a single image file to reduced size while preserving its aspect ratio and quality using either the Python
Imaging Library (PIL) or OpenCV library. If the input image is smaller than the maximum dimension, it will not be
resized.
Args:
f (str): The path to the input image file.