Add docformatter to pre-commit (#5279)

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: Burhan <62214284+Burhan-Q@users.noreply.github.com>
This commit is contained in:
Glenn Jocher 2023-10-09 02:25:22 +02:00 committed by GitHub
parent c7aa83da31
commit 7517667a33
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
90 changed files with 1396 additions and 497 deletions

View file

@ -27,11 +27,13 @@ IS_TMP_WRITEABLE = is_dir_writeable(TMP)
def test_model_forward():
"""Test the forward pass of the YOLO model."""
model = YOLO(CFG)
model(source=None, imgsz=32, augment=True) # also test no source and augment
def test_model_methods():
"""Test various methods and properties of the YOLO model."""
model = YOLO(MODEL)
# Model methods
@ -51,7 +53,7 @@ def test_model_methods():
def test_model_profile():
# Test profile=True model argument
"""Test profiling of the YOLO model with 'profile=True' argument."""
from ultralytics.nn.tasks import DetectionModel
model = DetectionModel() # build model
@ -61,7 +63,7 @@ def test_model_profile():
@pytest.mark.skipif(not IS_TMP_WRITEABLE, reason='directory is not writeable')
def test_predict_txt():
# Write a list of sources (file, dir, glob, recursive glob) to a txt file
"""Test YOLO predictions with sources (file, dir, glob, recursive glob) specified in a text file."""
txt_file = TMP / 'sources.txt'
with open(txt_file, 'w') as f:
for x in [ASSETS / 'bus.jpg', ASSETS, ASSETS / '*', ASSETS / '**/*.jpg']:
@ -70,6 +72,7 @@ def test_predict_txt():
def test_predict_img():
"""Test YOLO prediction on various types of image sources."""
model = YOLO(MODEL)
seg_model = YOLO(WEIGHTS_DIR / 'yolov8n-seg.pt')
cls_model = YOLO(WEIGHTS_DIR / 'yolov8n-cls.pt')
@ -105,7 +108,7 @@ def test_predict_img():
def test_predict_grey_and_4ch():
# Convert SOURCE to greyscale and 4-ch
"""Test YOLO prediction on SOURCE converted to greyscale and 4-channel images."""
im = Image.open(SOURCE)
directory = TMP / 'im4'
directory.mkdir(parents=True, exist_ok=True)
@ -132,8 +135,11 @@ def test_predict_grey_and_4ch():
@pytest.mark.skipif(not ONLINE, reason='environment is offline')
@pytest.mark.skipif(not IS_TMP_WRITEABLE, reason='directory is not writeable')
def test_track_stream():
# Test YouTube streaming inference (short 10 frame video) with non-default ByteTrack tracker
# imgsz=160 required for tracking for higher confidence and better matches
"""
Test YouTube streaming tracking (short 10 frame video) with non-default ByteTrack tracker.
Note imgsz=160 required for tracking for higher confidence and better matches
"""
import yaml
model = YOLO(MODEL)
@ -153,37 +159,44 @@ def test_track_stream():
def test_val():
"""Test the validation mode of the YOLO model."""
YOLO(MODEL).val(data='coco8.yaml', imgsz=32, save_hybrid=True)
def test_train_scratch():
"""Test training the YOLO model from scratch."""
model = YOLO(CFG)
model.train(data='coco8.yaml', epochs=2, imgsz=32, cache='disk', batch=-1, close_mosaic=1, name='model')
model(SOURCE)
def test_train_pretrained():
"""Test training the YOLO model from a pre-trained state."""
model = YOLO(WEIGHTS_DIR / 'yolov8n-seg.pt')
model.train(data='coco8-seg.yaml', epochs=1, imgsz=32, cache='ram', copy_paste=0.5, mixup=0.5, name=0)
model(SOURCE)
def test_export_torchscript():
"""Test exporting the YOLO model to TorchScript format."""
f = YOLO(MODEL).export(format='torchscript', optimize=False)
YOLO(f)(SOURCE) # exported model inference
def test_export_onnx():
"""Test exporting the YOLO model to ONNX format."""
f = YOLO(MODEL).export(format='onnx', dynamic=True)
YOLO(f)(SOURCE) # exported model inference
def test_export_openvino():
"""Test exporting the YOLO model to OpenVINO format."""
f = YOLO(MODEL).export(format='openvino')
YOLO(f)(SOURCE) # exported model inference
def test_export_coreml():
"""Test exporting the YOLO model to CoreML format."""
if not WINDOWS: # RuntimeError: BlobWriter not loaded with coremltools 7.0 on windows
if MACOS:
f = YOLO(MODEL).export(format='coreml')
@ -193,7 +206,11 @@ def test_export_coreml():
def test_export_tflite(enabled=False):
# TF suffers from install conflicts on Windows and macOS
"""
Test exporting the YOLO model to TFLite format.
Note TF suffers from install conflicts on Windows and macOS.
"""
if enabled and LINUX:
model = YOLO(MODEL)
f = model.export(format='tflite')
@ -201,7 +218,11 @@ def test_export_tflite(enabled=False):
def test_export_pb(enabled=False):
# TF suffers from install conflicts on Windows and macOS
"""
Test exporting the YOLO model to *.pb format.
Note TF suffers from install conflicts on Windows and macOS.
"""
if enabled and LINUX:
model = YOLO(MODEL)
f = model.export(format='pb')
@ -209,18 +230,24 @@ def test_export_pb(enabled=False):
def test_export_paddle(enabled=False):
# Paddle protobuf requirements conflicting with onnx protobuf requirements
"""
Test exporting the YOLO model to Paddle format.
Note Paddle protobuf requirements conflicting with onnx protobuf requirements.
"""
if enabled:
YOLO(MODEL).export(format='paddle')
@pytest.mark.slow
def test_export_ncnn():
"""Test exporting the YOLO model to NCNN format."""
f = YOLO(MODEL).export(format='ncnn')
YOLO(f)(SOURCE) # exported model inference
def test_all_model_yamls():
"""Test YOLO model creation for all available YAML configurations."""
for m in (ROOT / 'cfg' / 'models').rglob('*.yaml'):
if 'rtdetr' in m.name:
if TORCH_1_9: # torch<=1.8 issue - TypeError: __init__() got an unexpected keyword argument 'batch_first'
@ -230,6 +257,7 @@ def test_all_model_yamls():
def test_workflow():
"""Test the complete workflow including training, validation, prediction, and exporting."""
model = YOLO(MODEL)
model.train(data='coco8.yaml', epochs=1, imgsz=32, optimizer='SGD')
model.val(imgsz=32)
@ -238,12 +266,14 @@ def test_workflow():
def test_predict_callback_and_setup():
# Test callback addition for prediction
def on_predict_batch_end(predictor): # results -> List[batch_size]
"""Test callback functionality during YOLO prediction."""
def on_predict_batch_end(predictor):
"""Callback function that handles operations at the end of a prediction batch."""
path, im0s, _, _ = predictor.batch
im0s = im0s if isinstance(im0s, list) else [im0s]
bs = [predictor.dataset.bs for _ in range(len(path))]
predictor.results = zip(predictor.results, im0s, bs)
predictor.results = zip(predictor.results, im0s, bs) # results is List[batch_size]
model = YOLO(MODEL)
model.add_callback('on_predict_batch_end', on_predict_batch_end)
@ -259,6 +289,7 @@ def test_predict_callback_and_setup():
def test_results():
"""Test various result formats for the YOLO model."""
for m in 'yolov8n-pose.pt', 'yolov8n-seg.pt', 'yolov8n.pt', 'yolov8n-cls.pt':
results = YOLO(WEIGHTS_DIR / m)([SOURCE, SOURCE], imgsz=160)
for r in results:
@ -274,7 +305,7 @@ def test_results():
@pytest.mark.skipif(not ONLINE, reason='environment is offline')
def test_data_utils():
# Test functions in ultralytics/data/utils.py
"""Test utility functions in ultralytics/data/utils.py."""
from ultralytics.data.utils import HUBDatasetStats, autosplit
from ultralytics.utils.downloads import zip_directory
@ -294,7 +325,7 @@ def test_data_utils():
@pytest.mark.skipif(not ONLINE, reason='environment is offline')
def test_data_converter():
# Test dataset converters
"""Test dataset converters."""
from ultralytics.data.converter import coco80_to_coco91_class, convert_coco
file = 'instances_val2017.json'
@ -304,6 +335,7 @@ def test_data_converter():
def test_data_annotator():
"""Test automatic data annotation."""
from ultralytics.data.annotator import auto_annotate
auto_annotate(ASSETS,
@ -313,7 +345,7 @@ def test_data_annotator():
def test_events():
# Test event sending
"""Test event sending functionality."""
from ultralytics.hub.utils import Events
events = Events()
@ -324,6 +356,7 @@ def test_events():
def test_cfg_init():
"""Test configuration initialization utilities."""
from ultralytics.cfg import check_dict_alignment, copy_default_cfg, smart_value
with contextlib.suppress(SyntaxError):
@ -334,6 +367,7 @@ def test_cfg_init():
def test_utils_init():
"""Test initialization utilities."""
from ultralytics.utils import get_git_branch, get_git_origin_url, get_ubuntu_version, is_github_actions_ci
get_ubuntu_version()
@ -343,6 +377,7 @@ def test_utils_init():
def test_utils_checks():
"""Test various utility checks."""
checks.check_yolov5u_filename('yolov5n.pt')
checks.git_describe(ROOT)
checks.check_requirements() # check requirements.txt
@ -354,12 +389,14 @@ def test_utils_checks():
def test_utils_benchmarks():
"""Test model benchmarking."""
from ultralytics.utils.benchmarks import ProfileModels
ProfileModels(['yolov8n.yaml'], imgsz=32, min_time=1, num_timed_runs=3, num_warmup_runs=1).profile()
def test_utils_torchutils():
"""Test Torch utility functions."""
from ultralytics.nn.modules.conv import Conv
from ultralytics.utils.torch_utils import get_flops_with_torch_profiler, profile, time_sync
@ -373,12 +410,14 @@ def test_utils_torchutils():
@pytest.mark.skipif(not ONLINE, reason='environment is offline')
def test_utils_downloads():
"""Test file download utilities."""
from ultralytics.utils.downloads import get_google_drive_file_info
get_google_drive_file_info('https://drive.google.com/file/d/1cqT-cJgANNrhIHCrEufUYhQ4RqiWG_lJ/view?usp=drive_link')
def test_utils_ops():
"""Test various operations utilities."""
from ultralytics.utils.ops import (ltwh2xywh, ltwh2xyxy, make_divisible, xywh2ltwh, xywh2xyxy, xywhn2xyxy,
xywhr2xyxyxyxy, xyxy2ltwh, xyxy2xywh, xyxy2xywhn, xyxyxyxy2xywhr)
@ -396,6 +435,7 @@ def test_utils_ops():
def test_utils_files():
"""Test file handling utilities."""
from ultralytics.utils.files import file_age, file_date, get_latest_run, spaces_in_path
file_age(SOURCE)
@ -409,6 +449,7 @@ def test_utils_files():
def test_nn_modules_conv():
"""Test Convolutional Neural Network modules."""
from ultralytics.nn.modules.conv import CBAM, Conv2, ConvTranspose, DWConvTranspose2d, Focus
c1, c2 = 8, 16 # input and output channels
@ -427,6 +468,7 @@ def test_nn_modules_conv():
def test_nn_modules_block():
"""Test Neural Network block modules."""
from ultralytics.nn.modules.block import C1, C3TR, BottleneckCSP, C3Ghost, C3x
c1, c2 = 8, 16 # input and output channels
@ -442,6 +484,7 @@ def test_nn_modules_block():
@pytest.mark.skipif(not ONLINE, reason='environment is offline')
def test_hub():
"""Test Ultralytics HUB functionalities."""
from ultralytics.hub import export_fmts_hub, logout
from ultralytics.hub.utils import smart_request
@ -453,6 +496,7 @@ def test_hub():
@pytest.mark.slow
@pytest.mark.skipif(not ONLINE, reason='environment is offline')
def test_triton():
"""Test NVIDIA Triton Server functionalities."""
checks.check_requirements('tritonclient[all]')
import subprocess
import time