ultralytics 8.0.181 RTDETR, MLFlow fixes and Examples updates (#4927)

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: Jordane Sikati <jordanesikati@pusan.ac.kr>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
Co-authored-by: Akash A Desai <62583018+akashAD98@users.noreply.github.com>
Co-authored-by: Lukas Hennies <45569834+Gornoka@users.noreply.github.com>
Co-authored-by: 唐洁 <tangjie1953479@tongji.edu.cn>
This commit is contained in:
Glenn Jocher 2023-09-18 14:12:34 +02:00 committed by GitHub
parent 5702b2dccd
commit 742ec7fb1d
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
9 changed files with 46 additions and 26 deletions

View file

@ -1,6 +1,6 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
from ultralytics.utils import LOGGER, ROOT, SETTINGS, TESTS_RUNNING, colorstr
from ultralytics.utils import LOGGER, SETTINGS, TESTS_RUNNING, colorstr
try:
assert not TESTS_RUNNING # do not log pytest
@ -8,7 +8,7 @@ try:
import mlflow
assert hasattr(mlflow, '__version__') # verify package is not directory
PREFIX = colorstr('MLFlow:')
import os
import re
@ -25,15 +25,13 @@ def on_pretrain_routine_end(trainer):
if mlflow:
mlflow_location = os.environ['MLFLOW_TRACKING_URI'] # "http://192.168.xxx.xxx:5000"
LOGGER.debug(f'{PREFIX} tracking uri: {mlflow_location}')
mlflow.set_tracking_uri(mlflow_location)
experiment_name = os.environ.get('MLFLOW_EXPERIMENT_NAME') or trainer.args.project or '/Shared/YOLOv8'
run_name = os.environ.get('MLFLOW_RUN') or trainer.args.name
experiment = mlflow.get_experiment_by_name(experiment_name)
if experiment is None:
mlflow.create_experiment(experiment_name)
mlflow.set_experiment(experiment_name)
experiment = mlflow.set_experiment(experiment_name) # change since mlflow does this now by default
mlflow.autolog()
prefix = colorstr('MLFlow: ')
try:
run, active_run = mlflow, mlflow.active_run()
@ -58,10 +56,9 @@ def on_train_end(trainer):
if mlflow:
run.log_artifact(trainer.last)
run.log_artifact(trainer.best)
run.pyfunc.log_model(artifact_path=experiment_name,
code_path=[str(ROOT.parent)],
artifacts={'model_path': str(trainer.save_dir)},
python_model=run.pyfunc.PythonModel())
run.log_artifact(trainer.save_dir)
mlflow.end_run()
LOGGER.debug(f'{PREFIX} ending run')
callbacks = {