ultralytics 8.0.233 improve Classify train augmentations (#4546)

Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: Kayzwer <68285002+Kayzwer@users.noreply.github.com>
Co-authored-by: Yonghye Kwon <developer.0hye@gmail.com>
Co-authored-by: andresinsitu <andres.rodriguez@ingenieriainsitu.com>
Co-authored-by: Laughing-q <1185102784@qq.com>
Co-authored-by: Laughing <61612323+Laughing-q@users.noreply.github.com>
This commit is contained in:
fatih 2024-01-04 00:17:10 +03:00 committed by GitHub
parent 6218b82072
commit 73dbb41920
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
13 changed files with 253 additions and 108 deletions

View file

@ -1,6 +1,8 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
import cv2
import torch
from PIL import Image
from ultralytics.engine.predictor import BasePredictor
from ultralytics.engine.results import Results
@ -29,11 +31,18 @@ class ClassificationPredictor(BasePredictor):
"""Initializes ClassificationPredictor setting the task to 'classify'."""
super().__init__(cfg, overrides, _callbacks)
self.args.task = 'classify'
self._legacy_transform_name = 'ultralytics.yolo.data.augment.ToTensor'
def preprocess(self, img):
"""Converts input image to model-compatible data type."""
if not isinstance(img, torch.Tensor):
img = torch.stack([self.transforms(im) for im in img], dim=0)
is_legacy_transform = any(self._legacy_transform_name in str(transform)
for transform in self.transforms.transforms)
if is_legacy_transform: # to handle legacy transforms
img = torch.stack([self.transforms(im) for im in img], dim=0)
else:
img = torch.stack([self.transforms(Image.fromarray(cv2.cvtColor(im, cv2.COLOR_BGR2RGB))) for im in img],
dim=0)
img = (img if isinstance(img, torch.Tensor) else torch.from_numpy(img)).to(self.model.device)
return img.half() if self.model.fp16 else img.float() # uint8 to fp16/32