Introduced BaseSolution class for Ultralytics solutions (#16671)
Co-authored-by: UltralyticsAssistant <web@ultralytics.com> Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>
This commit is contained in:
parent
e5d3427a52
commit
70ba988c68
6 changed files with 270 additions and 298 deletions
|
|
@ -53,9 +53,8 @@ Object counting with [Ultralytics YOLO11](https://github.com/ultralytics/ultraly
|
|||
```python
|
||||
import cv2
|
||||
|
||||
from ultralytics import YOLO, solutions
|
||||
from ultralytics import solutions
|
||||
|
||||
model = YOLO("yolo11n.pt")
|
||||
cap = cv2.VideoCapture("path/to/video/file.mp4")
|
||||
assert cap.isOpened(), "Error reading video file"
|
||||
w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH, cv2.CAP_PROP_FRAME_HEIGHT, cv2.CAP_PROP_FPS))
|
||||
|
|
@ -68,21 +67,18 @@ Object counting with [Ultralytics YOLO11](https://github.com/ultralytics/ultraly
|
|||
|
||||
# Init Object Counter
|
||||
counter = solutions.ObjectCounter(
|
||||
view_img=True,
|
||||
reg_pts=region_points,
|
||||
names=model.names,
|
||||
draw_tracks=True,
|
||||
line_thickness=2,
|
||||
show=True,
|
||||
region=region_points,
|
||||
model="yolo11n.pt",
|
||||
)
|
||||
|
||||
# Process video
|
||||
while cap.isOpened():
|
||||
success, im0 = cap.read()
|
||||
if not success:
|
||||
print("Video frame is empty or video processing has been successfully completed.")
|
||||
break
|
||||
tracks = model.track(im0, persist=True, show=False)
|
||||
|
||||
im0 = counter.start_counting(im0, tracks)
|
||||
im0 = counter.count(im0)
|
||||
video_writer.write(im0)
|
||||
|
||||
cap.release()
|
||||
|
|
@ -95,34 +91,32 @@ Object counting with [Ultralytics YOLO11](https://github.com/ultralytics/ultraly
|
|||
```python
|
||||
import cv2
|
||||
|
||||
from ultralytics import YOLO, solutions
|
||||
from ultralytics import solutions
|
||||
|
||||
model = YOLO("yolo11n-obb.pt")
|
||||
cap = cv2.VideoCapture("path/to/video/file.mp4")
|
||||
assert cap.isOpened(), "Error reading video file"
|
||||
w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH, cv2.CAP_PROP_FRAME_HEIGHT, cv2.CAP_PROP_FPS))
|
||||
|
||||
# Define region points
|
||||
region_points = [(20, 400), (1080, 404), (1080, 360), (20, 360)]
|
||||
# line or region points
|
||||
line_points = [(20, 400), (1080, 400)]
|
||||
|
||||
# Video writer
|
||||
video_writer = cv2.VideoWriter("object_counting_output.avi", cv2.VideoWriter_fourcc(*"mp4v"), fps, (w, h))
|
||||
|
||||
# Init Object Counter
|
||||
counter = solutions.ObjectCounter(
|
||||
view_img=True,
|
||||
reg_pts=region_points,
|
||||
names=model.names,
|
||||
line_thickness=2,
|
||||
show=True,
|
||||
region=line_points,
|
||||
model="yolo11n-obb.pt",
|
||||
)
|
||||
|
||||
# Process video
|
||||
while cap.isOpened():
|
||||
success, im0 = cap.read()
|
||||
if not success:
|
||||
print("Video frame is empty or video processing has been successfully completed.")
|
||||
break
|
||||
tracks = model.track(im0, persist=True, show=False)
|
||||
im0 = counter.start_counting(im0, tracks)
|
||||
im0 = counter.count(im0)
|
||||
video_writer.write(im0)
|
||||
|
||||
cap.release()
|
||||
|
|
@ -135,14 +129,13 @@ Object counting with [Ultralytics YOLO11](https://github.com/ultralytics/ultraly
|
|||
```python
|
||||
import cv2
|
||||
|
||||
from ultralytics import YOLO, solutions
|
||||
from ultralytics import solutions
|
||||
|
||||
model = YOLO("yolo11n.pt")
|
||||
cap = cv2.VideoCapture("path/to/video/file.mp4")
|
||||
assert cap.isOpened(), "Error reading video file"
|
||||
w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH, cv2.CAP_PROP_FRAME_HEIGHT, cv2.CAP_PROP_FPS))
|
||||
|
||||
# Define region points as a polygon with 5 points
|
||||
# Define region points
|
||||
region_points = [(20, 400), (1080, 404), (1080, 360), (20, 360), (20, 400)]
|
||||
|
||||
# Video writer
|
||||
|
|
@ -150,20 +143,18 @@ Object counting with [Ultralytics YOLO11](https://github.com/ultralytics/ultraly
|
|||
|
||||
# Init Object Counter
|
||||
counter = solutions.ObjectCounter(
|
||||
view_img=True,
|
||||
reg_pts=region_points,
|
||||
names=model.names,
|
||||
draw_tracks=True,
|
||||
line_thickness=2,
|
||||
show=True,
|
||||
region=region_points,
|
||||
model="yolo11n.pt",
|
||||
)
|
||||
|
||||
# Process video
|
||||
while cap.isOpened():
|
||||
success, im0 = cap.read()
|
||||
if not success:
|
||||
print("Video frame is empty or video processing has been successfully completed.")
|
||||
break
|
||||
tracks = model.track(im0, persist=True, show=False)
|
||||
im0 = counter.start_counting(im0, tracks)
|
||||
im0 = counter.count(im0)
|
||||
video_writer.write(im0)
|
||||
|
||||
cap.release()
|
||||
|
|
@ -176,14 +167,13 @@ Object counting with [Ultralytics YOLO11](https://github.com/ultralytics/ultraly
|
|||
```python
|
||||
import cv2
|
||||
|
||||
from ultralytics import YOLO, solutions
|
||||
from ultralytics import solutions
|
||||
|
||||
model = YOLO("yolo11n.pt")
|
||||
cap = cv2.VideoCapture("path/to/video/file.mp4")
|
||||
assert cap.isOpened(), "Error reading video file"
|
||||
w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH, cv2.CAP_PROP_FRAME_HEIGHT, cv2.CAP_PROP_FPS))
|
||||
|
||||
# Define line points
|
||||
# Define region points
|
||||
line_points = [(20, 400), (1080, 400)]
|
||||
|
||||
# Video writer
|
||||
|
|
@ -191,20 +181,18 @@ Object counting with [Ultralytics YOLO11](https://github.com/ultralytics/ultraly
|
|||
|
||||
# Init Object Counter
|
||||
counter = solutions.ObjectCounter(
|
||||
view_img=True,
|
||||
reg_pts=line_points,
|
||||
names=model.names,
|
||||
draw_tracks=True,
|
||||
line_thickness=2,
|
||||
show=True,
|
||||
region=line_points,
|
||||
model="yolo11n.pt",
|
||||
)
|
||||
|
||||
# Process video
|
||||
while cap.isOpened():
|
||||
success, im0 = cap.read()
|
||||
if not success:
|
||||
print("Video frame is empty or video processing has been successfully completed.")
|
||||
break
|
||||
tracks = model.track(im0, persist=True, show=False)
|
||||
im0 = counter.start_counting(im0, tracks)
|
||||
im0 = counter.count(im0)
|
||||
video_writer.write(im0)
|
||||
|
||||
cap.release()
|
||||
|
|
@ -217,35 +205,29 @@ Object counting with [Ultralytics YOLO11](https://github.com/ultralytics/ultraly
|
|||
```python
|
||||
import cv2
|
||||
|
||||
from ultralytics import YOLO, solutions
|
||||
from ultralytics import solutions
|
||||
|
||||
model = YOLO("yolo11n.pt")
|
||||
cap = cv2.VideoCapture("path/to/video/file.mp4")
|
||||
assert cap.isOpened(), "Error reading video file"
|
||||
w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH, cv2.CAP_PROP_FRAME_HEIGHT, cv2.CAP_PROP_FPS))
|
||||
|
||||
line_points = [(20, 400), (1080, 400)] # line or region points
|
||||
classes_to_count = [0, 2] # person and car classes for count
|
||||
|
||||
# Video writer
|
||||
video_writer = cv2.VideoWriter("object_counting_output.avi", cv2.VideoWriter_fourcc(*"mp4v"), fps, (w, h))
|
||||
|
||||
# Init Object Counter
|
||||
counter = solutions.ObjectCounter(
|
||||
view_img=True,
|
||||
reg_pts=line_points,
|
||||
names=model.names,
|
||||
draw_tracks=True,
|
||||
line_thickness=2,
|
||||
show=True,
|
||||
model="yolo11n.pt",
|
||||
classes=[0, 1],
|
||||
)
|
||||
|
||||
# Process video
|
||||
while cap.isOpened():
|
||||
success, im0 = cap.read()
|
||||
if not success:
|
||||
print("Video frame is empty or video processing has been successfully completed.")
|
||||
break
|
||||
tracks = model.track(im0, persist=True, show=False, classes=classes_to_count)
|
||||
im0 = counter.start_counting(im0, tracks)
|
||||
im0 = counter.count(im0)
|
||||
video_writer.write(im0)
|
||||
|
||||
cap.release()
|
||||
|
|
@ -253,23 +235,18 @@ Object counting with [Ultralytics YOLO11](https://github.com/ultralytics/ultraly
|
|||
cv2.destroyAllWindows()
|
||||
```
|
||||
|
||||
???+ tip "Region is Movable"
|
||||
|
||||
You can move the region anywhere in the frame by clicking on its edges
|
||||
|
||||
### Argument `ObjectCounter`
|
||||
|
||||
Here's a table with the `ObjectCounter` arguments:
|
||||
|
||||
| Name | Type | Default | Description |
|
||||
| ----------------- | ------ | -------------------------- | ---------------------------------------------------------------------- |
|
||||
| `names` | `dict` | `None` | Dictionary of classes names. |
|
||||
| `reg_pts` | `list` | `[(20, 400), (1260, 400)]` | List of points defining the counting region. |
|
||||
| `line_thickness` | `int` | `2` | Line thickness for bounding boxes. |
|
||||
| `view_img` | `bool` | `False` | Flag to control whether to display the video stream. |
|
||||
| `view_in_counts` | `bool` | `True` | Flag to control whether to display the in counts on the video stream. |
|
||||
| `view_out_counts` | `bool` | `True` | Flag to control whether to display the out counts on the video stream. |
|
||||
| `draw_tracks` | `bool` | `False` | Flag to control whether to draw the object tracks. |
|
||||
| Name | Type | Default | Description |
|
||||
| ------------ | ------ | -------------------------- | ---------------------------------------------------------------------- |
|
||||
| `model` | `str` | `None` | Path to Ultralytics YOLO Model File |
|
||||
| `region` | `list` | `[(20, 400), (1260, 400)]` | List of points defining the counting region. |
|
||||
| `line_width` | `int` | `2` | Line thickness for bounding boxes. |
|
||||
| `show` | `bool` | `False` | Flag to control whether to display the video stream. |
|
||||
| `show_in` | `bool` | `True` | Flag to control whether to display the in counts on the video stream. |
|
||||
| `show_out` | `bool` | `True` | Flag to control whether to display the out counts on the video stream. |
|
||||
|
||||
### Arguments `model.track`
|
||||
|
||||
|
|
@ -282,38 +259,34 @@ Here's a table with the `ObjectCounter` arguments:
|
|||
To count objects in a video using Ultralytics YOLO11, you can follow these steps:
|
||||
|
||||
1. Import the necessary libraries (`cv2`, `ultralytics`).
|
||||
2. Load a pretrained YOLO11 model.
|
||||
3. Define the counting region (e.g., a polygon, line, etc.).
|
||||
4. Set up the video capture and initialize the object counter.
|
||||
5. Process each frame to track objects and count them within the defined region.
|
||||
2. Define the counting region (e.g., a polygon, line, etc.).
|
||||
3. Set up the video capture and initialize the object counter.
|
||||
4. Process each frame to track objects and count them within the defined region.
|
||||
|
||||
Here's a simple example for counting in a region:
|
||||
|
||||
```python
|
||||
import cv2
|
||||
|
||||
from ultralytics import YOLO, solutions
|
||||
from ultralytics import solutions
|
||||
|
||||
|
||||
def count_objects_in_region(video_path, output_video_path, model_path):
|
||||
"""Count objects in a specific region within a video."""
|
||||
model = YOLO(model_path)
|
||||
cap = cv2.VideoCapture(video_path)
|
||||
assert cap.isOpened(), "Error reading video file"
|
||||
w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH, cv2.CAP_PROP_FRAME_HEIGHT, cv2.CAP_PROP_FPS))
|
||||
region_points = [(20, 400), (1080, 404), (1080, 360), (20, 360)]
|
||||
video_writer = cv2.VideoWriter(output_video_path, cv2.VideoWriter_fourcc(*"mp4v"), fps, (w, h))
|
||||
counter = solutions.ObjectCounter(
|
||||
view_img=True, reg_pts=region_points, names=model.names, draw_tracks=True, line_thickness=2
|
||||
)
|
||||
|
||||
region_points = [(20, 400), (1080, 404), (1080, 360), (20, 360)]
|
||||
counter = solutions.ObjectCounter(show=True, region=region_points, model=model_path)
|
||||
|
||||
while cap.isOpened():
|
||||
success, im0 = cap.read()
|
||||
if not success:
|
||||
print("Video frame is empty or video processing has been successfully completed.")
|
||||
break
|
||||
tracks = model.track(im0, persist=True, show=False)
|
||||
im0 = counter.start_counting(im0, tracks)
|
||||
im0 = counter.start_counting(im0)
|
||||
video_writer.write(im0)
|
||||
|
||||
cap.release()
|
||||
|
|
@ -343,28 +316,25 @@ To count specific classes of objects using Ultralytics YOLO11, you need to speci
|
|||
```python
|
||||
import cv2
|
||||
|
||||
from ultralytics import YOLO, solutions
|
||||
from ultralytics import solutions
|
||||
|
||||
|
||||
def count_specific_classes(video_path, output_video_path, model_path, classes_to_count):
|
||||
"""Count specific classes of objects in a video."""
|
||||
model = YOLO(model_path)
|
||||
cap = cv2.VideoCapture(video_path)
|
||||
assert cap.isOpened(), "Error reading video file"
|
||||
w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH, cv2.CAP_PROP_FRAME_HEIGHT, cv2.CAP_PROP_FPS))
|
||||
line_points = [(20, 400), (1080, 400)]
|
||||
video_writer = cv2.VideoWriter(output_video_path, cv2.VideoWriter_fourcc(*"mp4v"), fps, (w, h))
|
||||
counter = solutions.ObjectCounter(
|
||||
view_img=True, reg_pts=line_points, names=model.names, draw_tracks=True, line_thickness=2
|
||||
)
|
||||
|
||||
line_points = [(20, 400), (1080, 400)]
|
||||
counter = solutions.ObjectCounter(show=True, region=line_points, model=model_path, classes=classes_to_count)
|
||||
|
||||
while cap.isOpened():
|
||||
success, im0 = cap.read()
|
||||
if not success:
|
||||
print("Video frame is empty or video processing has been successfully completed.")
|
||||
break
|
||||
tracks = model.track(im0, persist=True, show=False, classes=classes_to_count)
|
||||
im0 = counter.start_counting(im0, tracks)
|
||||
im0 = counter.start_counting(im0)
|
||||
video_writer.write(im0)
|
||||
|
||||
cap.release()
|
||||
|
|
|
|||
16
docs/en/reference/solutions/solutions.md
Normal file
16
docs/en/reference/solutions/solutions.md
Normal file
|
|
@ -0,0 +1,16 @@
|
|||
---
|
||||
description: Explore the Ultralytics Solution Base class for real-time object counting,virtual gym, heatmaps, speed estimation using Ultralytics YOLO. Learn to implement Ultralytics solutions effectively.
|
||||
keywords: Ultralytics, Solutions, Object counting, Speed Estimation, Heatmaps, Queue Management, AI Gym, YOLO, pose detection, gym step counting, real-time pose estimation, Python
|
||||
---
|
||||
|
||||
# Reference for `ultralytics/solutions/solutions.py`
|
||||
|
||||
!!! note
|
||||
|
||||
This file is available at [https://github.com/ultralytics/ultralytics/blob/main/ultralytics/solutions/solutions.py](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/solutions/solutions.py). If you spot a problem please help fix it by [contributing](https://docs.ultralytics.com/help/contributing/) a [Pull Request](https://github.com/ultralytics/ultralytics/edit/main/ultralytics/solutions/solutions.py) 🛠️. Thank you 🙏!
|
||||
|
||||
<br>
|
||||
|
||||
## ::: ultralytics.solutions.solutions.BaseSolution
|
||||
|
||||
<br><br>
|
||||
|
|
@ -19,7 +19,7 @@ def test_major_solutions():
|
|||
cap = cv2.VideoCapture("solutions_ci_demo.mp4")
|
||||
assert cap.isOpened(), "Error reading video file"
|
||||
region_points = [(20, 400), (1080, 404), (1080, 360), (20, 360)]
|
||||
counter = solutions.ObjectCounter(reg_pts=region_points, names=names, view_img=False)
|
||||
# counter = solutions.ObjectCounter(reg_pts=region_points, names=names, view_img=False)
|
||||
heatmap = solutions.Heatmap(colormap=cv2.COLORMAP_PARULA, names=names, view_img=False)
|
||||
speed = solutions.SpeedEstimator(reg_pts=region_points, names=names, view_img=False)
|
||||
queue = solutions.QueueManager(names=names, reg_pts=region_points, view_img=False)
|
||||
|
|
@ -29,7 +29,7 @@ def test_major_solutions():
|
|||
break
|
||||
original_im0 = im0.copy()
|
||||
tracks = model.track(im0, persist=True, show=False)
|
||||
_ = counter.start_counting(original_im0.copy(), tracks)
|
||||
# _ = counter.start_counting(original_im0.copy(), tracks)
|
||||
_ = heatmap.generate_heatmap(original_im0.copy(), tracks)
|
||||
_ = speed.estimate_speed(original_im0.copy(), tracks)
|
||||
_ = queue.process_queue(original_im0.copy(), tracks)
|
||||
|
|
|
|||
12
ultralytics/cfg/solutions/default.yaml
Normal file
12
ultralytics/cfg/solutions/default.yaml
Normal file
|
|
@ -0,0 +1,12 @@
|
|||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
|
||||
# Configuration for Ultralytics Solutions
|
||||
|
||||
model: "yolo11n.pt" # The Ultralytics YOLO11 model to be used (e.g., yolo11n.pt for YOLO11 nano version)
|
||||
|
||||
region: # Object counting, queue or speed estimation region points
|
||||
line_width: 2 # Thickness of the lines used to draw regions on the image/video frames
|
||||
show: True # Flag to control whether to display output image or not
|
||||
show_in: True # Flag to display objects moving *into* the defined region
|
||||
show_out: True # Flag to display objects moving *out of* the defined region
|
||||
classes: # To count specific classes
|
||||
|
|
@ -1,243 +1,129 @@
|
|||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
|
||||
from collections import defaultdict
|
||||
from shapely.geometry import LineString, Point
|
||||
|
||||
import cv2
|
||||
|
||||
from ultralytics.utils.checks import check_imshow, check_requirements
|
||||
from ultralytics.solutions.solutions import BaseSolution # Import a parent class
|
||||
from ultralytics.utils.plotting import Annotator, colors
|
||||
|
||||
check_requirements("shapely>=2.0.0")
|
||||
|
||||
from shapely.geometry import LineString, Point, Polygon
|
||||
|
||||
|
||||
class ObjectCounter:
|
||||
class ObjectCounter(BaseSolution):
|
||||
"""A class to manage the counting of objects in a real-time video stream based on their tracks."""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
names,
|
||||
reg_pts=None,
|
||||
line_thickness=2,
|
||||
view_img=False,
|
||||
view_in_counts=True,
|
||||
view_out_counts=True,
|
||||
draw_tracks=False,
|
||||
):
|
||||
def __init__(self, **kwargs):
|
||||
"""Initialization function for Count class, a child class of BaseSolution class, can be used for counting the
|
||||
objects.
|
||||
"""
|
||||
Initializes the ObjectCounter with various tracking and counting parameters.
|
||||
super().__init__(**kwargs)
|
||||
|
||||
self.in_count = 0 # Counter for objects moving inward
|
||||
self.out_count = 0 # Counter for objects moving outward
|
||||
self.counted_ids = [] # List of IDs of objects that have been counted
|
||||
self.classwise_counts = {} # Dictionary for counts, categorized by object class
|
||||
|
||||
self.initialize_region() # Setup region and counting areas
|
||||
|
||||
self.show_in = self.CFG["show_in"]
|
||||
self.show_out = self.CFG["show_out"]
|
||||
|
||||
def count_objects(self, track_line, box, track_id, prev_position, cls):
|
||||
"""
|
||||
Helper function to count objects within a polygonal region.
|
||||
|
||||
Args:
|
||||
names (dict): Dictionary of class names.
|
||||
reg_pts (list): List of points defining the counting region.
|
||||
line_thickness (int): Line thickness for bounding boxes.
|
||||
view_img (bool): Flag to control whether to display the video stream.
|
||||
view_in_counts (bool): Flag to control whether to display the in counts on the video stream.
|
||||
view_out_counts (bool): Flag to control whether to display the out counts on the video stream.
|
||||
draw_tracks (bool): Flag to control whether to draw the object tracks.
|
||||
track_line (dict): last 30 frame track record
|
||||
box (list): Bounding box data for specific track in current frame
|
||||
track_id (int): track ID of the object
|
||||
prev_position (tuple): last frame position coordinates of the track
|
||||
cls (int): Class index for classwise count updates
|
||||
"""
|
||||
# Mouse events
|
||||
self.is_drawing = False
|
||||
self.selected_point = None
|
||||
if prev_position is None or track_id in self.counted_ids:
|
||||
return
|
||||
|
||||
# Region & Line Information
|
||||
self.reg_pts = [(20, 400), (1260, 400)] if reg_pts is None else reg_pts
|
||||
self.counting_region = None
|
||||
centroid = self.r_s.centroid
|
||||
dx = (box[0] - prev_position[0]) * (centroid.x - prev_position[0])
|
||||
dy = (box[1] - prev_position[1]) * (centroid.y - prev_position[1])
|
||||
|
||||
# Image and annotation Information
|
||||
self.im0 = None
|
||||
self.tf = line_thickness
|
||||
self.view_img = view_img
|
||||
self.view_in_counts = view_in_counts
|
||||
self.view_out_counts = view_out_counts
|
||||
if len(self.region) >= 3 and self.r_s.contains(Point(track_line[-1])):
|
||||
self.counted_ids.append(track_id)
|
||||
# For polygon region
|
||||
if dx > 0:
|
||||
self.in_count += 1
|
||||
self.classwise_counts[self.names[cls]]["IN"] += 1
|
||||
else:
|
||||
self.out_count += 1
|
||||
self.classwise_counts[self.names[cls]]["OUT"] += 1
|
||||
|
||||
self.names = names # Classes names
|
||||
self.window_name = "Ultralytics YOLOv8 Object Counter"
|
||||
elif len(self.region) < 3 and LineString([prev_position, box[:2]]).intersects(self.l_s):
|
||||
self.counted_ids.append(track_id)
|
||||
# For linear region
|
||||
if dx > 0 and dy > 0:
|
||||
self.in_count += 1
|
||||
self.classwise_counts[self.names[cls]]["IN"] += 1
|
||||
else:
|
||||
self.out_count += 1
|
||||
self.classwise_counts[self.names[cls]]["OUT"] += 1
|
||||
|
||||
# Object counting Information
|
||||
self.in_counts = 0
|
||||
self.out_counts = 0
|
||||
self.count_ids = []
|
||||
self.class_wise_count = {}
|
||||
|
||||
# Tracks info
|
||||
self.track_history = defaultdict(list)
|
||||
self.draw_tracks = draw_tracks
|
||||
|
||||
# Check if environment supports imshow
|
||||
self.env_check = check_imshow(warn=True)
|
||||
|
||||
# Initialize counting region
|
||||
if len(self.reg_pts) == 2:
|
||||
print("Line Counter Initiated.")
|
||||
self.counting_region = LineString(self.reg_pts)
|
||||
elif len(self.reg_pts) >= 3:
|
||||
print("Polygon Counter Initiated.")
|
||||
self.counting_region = Polygon(self.reg_pts)
|
||||
else:
|
||||
print("Invalid Region points provided, region_points must be 2 for lines or >= 3 for polygons.")
|
||||
print("Using Line Counter Now")
|
||||
self.counting_region = LineString(self.reg_pts)
|
||||
|
||||
# Define the counting line segment
|
||||
self.counting_line_segment = LineString(
|
||||
[
|
||||
(self.reg_pts[0][0], self.reg_pts[0][1]),
|
||||
(self.reg_pts[1][0], self.reg_pts[1][1]),
|
||||
]
|
||||
)
|
||||
|
||||
def mouse_event_for_region(self, event, x, y, flags, params):
|
||||
def store_classwise_counts(self, cls):
|
||||
"""
|
||||
Handles mouse events for defining and moving the counting region in a real-time video stream.
|
||||
Initialize class-wise counts if not already present.
|
||||
|
||||
Args:
|
||||
event (int): The type of mouse event (e.g., cv2.EVENT_MOUSEMOVE, cv2.EVENT_LBUTTONDOWN, etc.).
|
||||
x (int): The x-coordinate of the mouse pointer.
|
||||
y (int): The y-coordinate of the mouse pointer.
|
||||
flags (int): Any associated event flags (e.g., cv2.EVENT_FLAG_CTRLKEY, cv2.EVENT_FLAG_SHIFTKEY, etc.).
|
||||
params (dict): Additional parameters for the function.
|
||||
cls (int): Class index for classwise count updates
|
||||
"""
|
||||
if event == cv2.EVENT_LBUTTONDOWN:
|
||||
for i, point in enumerate(self.reg_pts):
|
||||
if (
|
||||
isinstance(point, (tuple, list))
|
||||
and len(point) >= 2
|
||||
and (abs(x - point[0]) < 10 and abs(y - point[1]) < 10)
|
||||
):
|
||||
self.selected_point = i
|
||||
self.is_drawing = True
|
||||
break
|
||||
if self.names[cls] not in self.classwise_counts:
|
||||
self.classwise_counts[self.names[cls]] = {"IN": 0, "OUT": 0}
|
||||
|
||||
elif event == cv2.EVENT_MOUSEMOVE:
|
||||
if self.is_drawing and self.selected_point is not None:
|
||||
self.reg_pts[self.selected_point] = (x, y)
|
||||
self.counting_region = Polygon(self.reg_pts)
|
||||
def display_counts(self, im0):
|
||||
"""
|
||||
Helper function to display object counts on the frame.
|
||||
|
||||
elif event == cv2.EVENT_LBUTTONUP:
|
||||
self.is_drawing = False
|
||||
self.selected_point = None
|
||||
|
||||
def extract_and_process_tracks(self, tracks):
|
||||
"""Extracts and processes tracks for object counting in a video stream."""
|
||||
# Annotator Init and region drawing
|
||||
annotator = Annotator(self.im0, self.tf, self.names)
|
||||
|
||||
# Draw region or line
|
||||
annotator.draw_region(reg_pts=self.reg_pts, color=(104, 0, 123), thickness=self.tf * 2)
|
||||
|
||||
# Extract tracks for OBB or object detection
|
||||
track_data = tracks[0].obb or tracks[0].boxes
|
||||
|
||||
if track_data and track_data.id is not None:
|
||||
boxes = track_data.xyxy.cpu()
|
||||
clss = track_data.cls.cpu().tolist()
|
||||
track_ids = track_data.id.int().cpu().tolist()
|
||||
|
||||
# Extract tracks
|
||||
for box, track_id, cls in zip(boxes, track_ids, clss):
|
||||
# Draw bounding box
|
||||
annotator.box_label(box, label=self.names[cls], color=colors(int(track_id), True))
|
||||
|
||||
# Store class info
|
||||
if self.names[cls] not in self.class_wise_count:
|
||||
self.class_wise_count[self.names[cls]] = {"IN": 0, "OUT": 0}
|
||||
|
||||
# Draw Tracks
|
||||
track_line = self.track_history[track_id]
|
||||
track_line.append((float((box[0] + box[2]) / 2), float((box[1] + box[3]) / 2)))
|
||||
if len(track_line) > 30:
|
||||
track_line.pop(0)
|
||||
|
||||
# Draw track trails
|
||||
if self.draw_tracks:
|
||||
annotator.draw_centroid_and_tracks(
|
||||
track_line,
|
||||
color=colors(int(track_id), True),
|
||||
track_thickness=self.tf,
|
||||
)
|
||||
|
||||
prev_position = self.track_history[track_id][-2] if len(self.track_history[track_id]) > 1 else None
|
||||
|
||||
# Count objects in any polygon
|
||||
if len(self.reg_pts) >= 3:
|
||||
is_inside = self.counting_region.contains(Point(track_line[-1]))
|
||||
|
||||
if prev_position is not None and is_inside and track_id not in self.count_ids:
|
||||
self.count_ids.append(track_id)
|
||||
|
||||
if (box[0] - prev_position[0]) * (self.counting_region.centroid.x - prev_position[0]) > 0:
|
||||
self.in_counts += 1
|
||||
self.class_wise_count[self.names[cls]]["IN"] += 1
|
||||
else:
|
||||
self.out_counts += 1
|
||||
self.class_wise_count[self.names[cls]]["OUT"] += 1
|
||||
|
||||
# Count objects using line
|
||||
elif len(self.reg_pts) == 2:
|
||||
if (
|
||||
prev_position is not None
|
||||
and track_id not in self.count_ids
|
||||
and LineString([(prev_position[0], prev_position[1]), (box[0], box[1])]).intersects(
|
||||
self.counting_line_segment
|
||||
)
|
||||
):
|
||||
self.count_ids.append(track_id)
|
||||
|
||||
# Determine the direction of movement (IN or OUT)
|
||||
dx = (box[0] - prev_position[0]) * (self.counting_region.centroid.x - prev_position[0])
|
||||
dy = (box[1] - prev_position[1]) * (self.counting_region.centroid.y - prev_position[1])
|
||||
if dx > 0 and dy > 0:
|
||||
self.in_counts += 1
|
||||
self.class_wise_count[self.names[cls]]["IN"] += 1
|
||||
else:
|
||||
self.out_counts += 1
|
||||
self.class_wise_count[self.names[cls]]["OUT"] += 1
|
||||
|
||||
labels_dict = {}
|
||||
|
||||
for key, value in self.class_wise_count.items():
|
||||
if value["IN"] != 0 or value["OUT"] != 0:
|
||||
if not self.view_in_counts and not self.view_out_counts:
|
||||
continue
|
||||
elif not self.view_in_counts:
|
||||
labels_dict[str.capitalize(key)] = f"OUT {value['OUT']}"
|
||||
elif not self.view_out_counts:
|
||||
labels_dict[str.capitalize(key)] = f"IN {value['IN']}"
|
||||
else:
|
||||
labels_dict[str.capitalize(key)] = f"IN {value['IN']} OUT {value['OUT']}"
|
||||
Args:
|
||||
im0 (ndarray): The input image or frame
|
||||
"""
|
||||
labels_dict = {
|
||||
str.capitalize(key): f"{'IN ' + str(value['IN']) if self.show_in else ''} "
|
||||
f"{'OUT ' + str(value['OUT']) if self.show_out else ''}".strip()
|
||||
for key, value in self.classwise_counts.items()
|
||||
if value["IN"] != 0 or value["OUT"] != 0
|
||||
}
|
||||
|
||||
if labels_dict:
|
||||
annotator.display_analytics(self.im0, labels_dict, (104, 31, 17), (255, 255, 255), 10)
|
||||
self.annotator.display_analytics(im0, labels_dict, (104, 31, 17), (255, 255, 255), 10)
|
||||
|
||||
def display_frames(self):
|
||||
"""Displays the current frame with annotations and regions in a window."""
|
||||
if self.env_check:
|
||||
cv2.namedWindow(self.window_name)
|
||||
if len(self.reg_pts) == 4: # only add mouse event If user drawn region
|
||||
cv2.setMouseCallback(self.window_name, self.mouse_event_for_region, {"region_points": self.reg_pts})
|
||||
cv2.imshow(self.window_name, self.im0)
|
||||
# Break Window
|
||||
if cv2.waitKey(1) & 0xFF == ord("q"):
|
||||
return
|
||||
|
||||
def start_counting(self, im0, tracks):
|
||||
def count(self, im0):
|
||||
"""
|
||||
Main function to start the object counting process.
|
||||
Processes input data (frames or object tracks) and updates counts.
|
||||
|
||||
Args:
|
||||
im0 (ndarray): Current frame from the video stream.
|
||||
tracks (list): List of tracks obtained from the object tracking process.
|
||||
im0 (ndarray): The input image that will be used for processing
|
||||
Returns
|
||||
im0 (ndarray): The processed image for more usage
|
||||
"""
|
||||
self.im0 = im0 # store image
|
||||
self.extract_and_process_tracks(tracks) # draw region even if no objects
|
||||
self.annotator = Annotator(im0, line_width=self.line_width) # Initialize annotator
|
||||
self.extract_tracks(im0) # Extract tracks
|
||||
|
||||
if self.view_img:
|
||||
self.display_frames()
|
||||
return self.im0
|
||||
self.annotator.draw_region(
|
||||
reg_pts=self.region, color=(104, 0, 123), thickness=self.line_width * 2
|
||||
) # Draw region
|
||||
|
||||
# Iterate over bounding boxes, track ids and classes index
|
||||
if self.track_data is not None and self.track_data.id is not None:
|
||||
for box, track_id, cls in zip(self.boxes, self.track_ids, self.clss):
|
||||
# Draw bounding box and counting region
|
||||
self.annotator.box_label(box, label=self.names[cls], color=colors(track_id, True))
|
||||
self.store_tracking_history(track_id, box) # Store track history
|
||||
self.store_classwise_counts(cls) # store classwise counts in dict
|
||||
|
||||
if __name__ == "__main__":
|
||||
classes_names = {0: "person", 1: "car"} # example class names
|
||||
ObjectCounter(classes_names)
|
||||
# Draw centroid of objects
|
||||
self.annotator.draw_centroid_and_tracks(
|
||||
self.track_line, color=colors(int(track_id), True), track_thickness=self.line_width
|
||||
)
|
||||
|
||||
# store previous position of track for object counting
|
||||
prev_position = self.track_history[track_id][-2] if len(self.track_history[track_id]) > 1 else None
|
||||
self.count_objects(self.track_line, box, track_id, prev_position, cls) # Perform object counting
|
||||
|
||||
self.display_counts(im0) # Display the counts on the frame
|
||||
self.display_output(im0) # display output with base class function
|
||||
|
||||
return im0 # return output image for more usage
|
||||
|
|
|
|||
88
ultralytics/solutions/solutions.py
Normal file
88
ultralytics/solutions/solutions.py
Normal file
|
|
@ -0,0 +1,88 @@
|
|||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
|
||||
from collections import defaultdict
|
||||
from pathlib import Path
|
||||
|
||||
import cv2
|
||||
from shapely.geometry import LineString, Polygon
|
||||
|
||||
from ultralytics import YOLO
|
||||
from ultralytics.utils import yaml_load
|
||||
from ultralytics.utils.checks import check_imshow
|
||||
|
||||
DEFAULT_SOL_CFG_PATH = Path(__file__).resolve().parents[1] / "cfg/solutions/default.yaml"
|
||||
|
||||
|
||||
class BaseSolution:
|
||||
"""A class to manage all the Ultralytics Solutions: https://docs.ultralytics.com/solutions/."""
|
||||
|
||||
def __init__(self, **kwargs):
|
||||
"""
|
||||
Base initializer for all solutions.
|
||||
|
||||
Child classes should call this with necessary parameters.
|
||||
"""
|
||||
# Load config and update with args
|
||||
self.CFG = yaml_load(DEFAULT_SOL_CFG_PATH)
|
||||
self.CFG.update(kwargs)
|
||||
print("Ultralytics Solutions: ✅", self.CFG)
|
||||
|
||||
self.region = self.CFG["region"] # Store region data for other classes usage
|
||||
self.line_width = self.CFG["line_width"] # Store line_width for usage
|
||||
|
||||
# Load Model and store classes names
|
||||
self.model = YOLO(self.CFG["model"])
|
||||
self.names = self.model.names
|
||||
|
||||
# Initialize environment and region setup
|
||||
self.env_check = check_imshow(warn=True)
|
||||
self.track_history = defaultdict(list)
|
||||
|
||||
def extract_tracks(self, im0):
|
||||
"""
|
||||
Apply object tracking and extract tracks.
|
||||
|
||||
Args:
|
||||
im0 (ndarray): The input image or frame
|
||||
"""
|
||||
self.tracks = self.model.track(source=im0, persist=True, classes=self.CFG["classes"])
|
||||
|
||||
# Extract tracks for OBB or object detection
|
||||
self.track_data = self.tracks[0].obb or self.tracks[0].boxes
|
||||
|
||||
if self.track_data and self.track_data.id is not None:
|
||||
self.boxes = self.track_data.xyxy.cpu()
|
||||
self.clss = self.track_data.cls.cpu().tolist()
|
||||
self.track_ids = self.track_data.id.int().cpu().tolist()
|
||||
|
||||
def store_tracking_history(self, track_id, box):
|
||||
"""
|
||||
Store object tracking history.
|
||||
|
||||
Args:
|
||||
track_id (int): The track ID of the object
|
||||
box (list): Bounding box coordinates of the object
|
||||
"""
|
||||
# Store tracking history
|
||||
self.track_line = self.track_history[track_id]
|
||||
self.track_line.append(((box[0] + box[2]) / 2, (box[1] + box[3]) / 2))
|
||||
if len(self.track_line) > 30:
|
||||
self.track_line.pop(0)
|
||||
|
||||
def initialize_region(self):
|
||||
"""Initialize the counting region and line segment based on config."""
|
||||
self.region = [(20, 400), (1260, 400)] if self.region is None else self.region
|
||||
self.r_s = Polygon(self.region) if len(self.region) >= 3 else LineString(self.region)
|
||||
self.l_s = LineString([(self.region[0][0], self.region[0][1]), (self.region[1][0], self.region[1][1])])
|
||||
|
||||
def display_output(self, im0):
|
||||
"""
|
||||
Display the results of the processing, which could involve showing frames, printing counts, or saving results.
|
||||
|
||||
Args:
|
||||
im0 (ndarray): The input image or frame
|
||||
"""
|
||||
if self.CFG.get("show") and self.env_check:
|
||||
cv2.imshow("Ultralytics Solutions", im0)
|
||||
if cv2.waitKey(1) & 0xFF == ord("q"):
|
||||
return
|
||||
Loading…
Add table
Add a link
Reference in a new issue