Add best.pt val and COCO pycocotools val (#98)
Co-authored-by: ayush chaurasia <ayush.chaurarsia@gmail.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
This commit is contained in:
parent
a1808eeda4
commit
6f0ba81427
12 changed files with 159 additions and 115 deletions
|
|
@ -1,3 +1,4 @@
|
|||
import json
|
||||
from pathlib import Path
|
||||
|
||||
import torch
|
||||
|
|
@ -29,6 +30,7 @@ class BaseValidator:
|
|||
self.batch_i = None
|
||||
self.training = True
|
||||
self.speed = None
|
||||
self.jdict = None
|
||||
self.save_dir = save_dir if save_dir is not None else \
|
||||
increment_path(Path(self.args.project) / self.args.name, exist_ok=self.args.exist_ok)
|
||||
|
||||
|
|
@ -65,11 +67,12 @@ class BaseValidator:
|
|||
self.logger.info(
|
||||
f'Forcing --batch-size 1 square inference (1,3,{imgsz},{imgsz}) for non-PyTorch models')
|
||||
|
||||
if self.args.data.endswith(".yaml"):
|
||||
if isinstance(self.args.data, str) and self.args.data.endswith(".yaml"):
|
||||
data = check_dataset_yaml(self.args.data)
|
||||
else:
|
||||
data = check_dataset(self.args.data)
|
||||
self.dataloader = self.get_dataloader(data.get("val") or data.set("test"), self.args.batch_size)
|
||||
self.dataloader = self.get_dataloader(data.get("val") or data.set("test"),
|
||||
self.args.batch_size) if not self.dataloader else self.dataloader
|
||||
|
||||
model.eval()
|
||||
|
||||
|
|
@ -81,6 +84,7 @@ class BaseValidator:
|
|||
# bar = tqdm(self.dataloader, desc, n_batches, not self.training, bar_format=TQDM_BAR_FORMAT)
|
||||
bar = tqdm(self.dataloader, desc, n_batches, bar_format=TQDM_BAR_FORMAT)
|
||||
self.init_metrics(de_parallel(model))
|
||||
self.jdict = [] # empty before each val
|
||||
for batch_i, batch in enumerate(bar):
|
||||
self.batch_i = batch_i
|
||||
# pre-process
|
||||
|
|
@ -105,25 +109,26 @@ class BaseValidator:
|
|||
self.plot_val_samples(batch, batch_i)
|
||||
self.plot_predictions(batch, preds, batch_i)
|
||||
|
||||
if self.args.save_json:
|
||||
self.pred_to_json(preds, batch)
|
||||
|
||||
stats = self.get_stats()
|
||||
self.check_stats(stats)
|
||||
|
||||
self.print_results()
|
||||
|
||||
# calculate speed only once when training
|
||||
if not self.training or trainer.epoch == 0:
|
||||
self.speed = tuple(x.t / len(self.dataloader.dataset) * 1E3 for x in dt) # speeds per image
|
||||
|
||||
if not self.training: # print only at inference
|
||||
self.logger.info('Speed: %.1fms pre-process, %.1fms inference, %.1fms loss, %.1fms post-process per image' %
|
||||
self.speed)
|
||||
|
||||
self.speed = tuple(x.t / len(self.dataloader.dataset) * 1E3 for x in dt) # speeds per image
|
||||
if self.training:
|
||||
model.float()
|
||||
# TODO: implement save json
|
||||
return {**stats, **trainer.label_loss_items(self.loss.cpu() / len(self.dataloader), prefix="val")}
|
||||
else:
|
||||
self.logger.info('Speed: %.1fms pre-process, %.1fms inference, %.1fms loss, %.1fms post-process per image' %
|
||||
self.speed)
|
||||
if self.args.save_json and self.jdict:
|
||||
with open(str(self.save_dir / "predictions.json"), 'w') as f:
|
||||
self.logger.info(f"Saving {f.name}...")
|
||||
json.dump(self.jdict, f) # flatten and save
|
||||
|
||||
return {**stats, **trainer.label_loss_items(self.loss.cpu() / len(self.dataloader), prefix="val")} \
|
||||
if self.training else stats
|
||||
self.eval_json()
|
||||
return stats
|
||||
|
||||
def get_dataloader(self, dataset_path, batch_size):
|
||||
raise NotImplementedError("get_dataloader function not implemented for this validator")
|
||||
|
|
@ -162,3 +167,9 @@ class BaseValidator:
|
|||
|
||||
def plot_predictions(self, batch, preds, ni):
|
||||
pass
|
||||
|
||||
def pred_to_json(self, preds, batch):
|
||||
pass
|
||||
|
||||
def eval_json(self):
|
||||
pass
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue