Add best.pt val and COCO pycocotools val (#98)

Co-authored-by: ayush chaurasia <ayush.chaurarsia@gmail.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
This commit is contained in:
Glenn Jocher 2022-12-27 04:56:24 +01:00 committed by GitHub
parent a1808eeda4
commit 6f0ba81427
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
12 changed files with 159 additions and 115 deletions

View file

@ -1,3 +1,4 @@
import json
from pathlib import Path
import torch
@ -29,6 +30,7 @@ class BaseValidator:
self.batch_i = None
self.training = True
self.speed = None
self.jdict = None
self.save_dir = save_dir if save_dir is not None else \
increment_path(Path(self.args.project) / self.args.name, exist_ok=self.args.exist_ok)
@ -65,11 +67,12 @@ class BaseValidator:
self.logger.info(
f'Forcing --batch-size 1 square inference (1,3,{imgsz},{imgsz}) for non-PyTorch models')
if self.args.data.endswith(".yaml"):
if isinstance(self.args.data, str) and self.args.data.endswith(".yaml"):
data = check_dataset_yaml(self.args.data)
else:
data = check_dataset(self.args.data)
self.dataloader = self.get_dataloader(data.get("val") or data.set("test"), self.args.batch_size)
self.dataloader = self.get_dataloader(data.get("val") or data.set("test"),
self.args.batch_size) if not self.dataloader else self.dataloader
model.eval()
@ -81,6 +84,7 @@ class BaseValidator:
# bar = tqdm(self.dataloader, desc, n_batches, not self.training, bar_format=TQDM_BAR_FORMAT)
bar = tqdm(self.dataloader, desc, n_batches, bar_format=TQDM_BAR_FORMAT)
self.init_metrics(de_parallel(model))
self.jdict = [] # empty before each val
for batch_i, batch in enumerate(bar):
self.batch_i = batch_i
# pre-process
@ -105,25 +109,26 @@ class BaseValidator:
self.plot_val_samples(batch, batch_i)
self.plot_predictions(batch, preds, batch_i)
if self.args.save_json:
self.pred_to_json(preds, batch)
stats = self.get_stats()
self.check_stats(stats)
self.print_results()
# calculate speed only once when training
if not self.training or trainer.epoch == 0:
self.speed = tuple(x.t / len(self.dataloader.dataset) * 1E3 for x in dt) # speeds per image
if not self.training: # print only at inference
self.logger.info('Speed: %.1fms pre-process, %.1fms inference, %.1fms loss, %.1fms post-process per image' %
self.speed)
self.speed = tuple(x.t / len(self.dataloader.dataset) * 1E3 for x in dt) # speeds per image
if self.training:
model.float()
# TODO: implement save json
return {**stats, **trainer.label_loss_items(self.loss.cpu() / len(self.dataloader), prefix="val")}
else:
self.logger.info('Speed: %.1fms pre-process, %.1fms inference, %.1fms loss, %.1fms post-process per image' %
self.speed)
if self.args.save_json and self.jdict:
with open(str(self.save_dir / "predictions.json"), 'w') as f:
self.logger.info(f"Saving {f.name}...")
json.dump(self.jdict, f) # flatten and save
return {**stats, **trainer.label_loss_items(self.loss.cpu() / len(self.dataloader), prefix="val")} \
if self.training else stats
self.eval_json()
return stats
def get_dataloader(self, dataset_path, batch_size):
raise NotImplementedError("get_dataloader function not implemented for this validator")
@ -162,3 +167,9 @@ class BaseValidator:
def plot_predictions(self, batch, preds, ni):
pass
def pred_to_json(self, preds, batch):
pass
def eval_json(self):
pass