ultralytics 8.3.0 YOLO11 Models Release (#16539)

Signed-off-by: UltralyticsAssistant <web@ultralytics.com>
Co-authored-by: Laughing-q <1185102784@qq.com>
Co-authored-by: UltralyticsAssistant <web@ultralytics.com>
This commit is contained in:
Glenn Jocher 2024-09-30 02:59:20 +02:00 committed by GitHub
parent efb0c17881
commit 6e43d1e1e5
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
50 changed files with 1154 additions and 407 deletions

View file

@ -17,16 +17,17 @@ Here are some of the key models supported:
3. **[YOLOv5](yolov5.md)**: An improved version of the YOLO architecture by Ultralytics, offering better performance and speed trade-offs compared to previous versions.
4. **[YOLOv6](yolov6.md)**: Released by [Meituan](https://about.meituan.com/) in 2022, and in use in many of the company's autonomous delivery robots.
5. **[YOLOv7](yolov7.md)**: Updated YOLO models released in 2022 by the authors of YOLOv4.
6. **[YOLOv8](yolov8.md) NEW 🚀**: The latest version of the YOLO family, featuring enhanced capabilities such as [instance segmentation](https://www.ultralytics.com/glossary/instance-segmentation), pose/keypoints estimation, and classification.
6. **[YOLOv8](yolov8.md)**: The latest version of the YOLO family, featuring enhanced capabilities such as [instance segmentation](https://www.ultralytics.com/glossary/instance-segmentation), pose/keypoints estimation, and classification.
7. **[YOLOv9](yolov9.md)**: An experimental model trained on the Ultralytics [YOLOv5](yolov5.md) codebase implementing Programmable Gradient Information (PGI).
8. **[YOLOv10](yolov10.md)**: By Tsinghua University, featuring NMS-free training and efficiency-accuracy driven architecture, delivering state-of-the-art performance and latency.
9. **[Segment Anything Model (SAM)](sam.md)**: Meta's original Segment Anything Model (SAM).
10. **[Segment Anything Model 2 (SAM2)](sam-2.md)**: The next generation of Meta's Segment Anything Model (SAM) for videos and images.
11. **[Mobile Segment Anything Model (MobileSAM)](mobile-sam.md)**: MobileSAM for mobile applications, by Kyung Hee University.
12. **[Fast Segment Anything Model (FastSAM)](fast-sam.md)**: FastSAM by Image & Video Analysis Group, Institute of Automation, Chinese Academy of Sciences.
13. **[YOLO-NAS](yolo-nas.md)**: YOLO Neural Architecture Search (NAS) Models.
14. **[Realtime Detection Transformers (RT-DETR)](rtdetr.md)**: Baidu's PaddlePaddle Realtime Detection [Transformer](https://www.ultralytics.com/glossary/transformer) (RT-DETR) models.
15. **[YOLO-World](yolo-world.md)**: Real-time Open Vocabulary Object Detection models from Tencent AI Lab.
9. **[YOLO11](yolo11.md) NEW 🚀**: Ultralytics' latest YOLO models delivering state-of-the-art (SOTA) performance across multiple tasks.
10. **[Segment Anything Model (SAM)](sam.md)**: Meta's original Segment Anything Model (SAM).
11. **[Segment Anything Model 2 (SAM2)](sam-2.md)**: The next generation of Meta's Segment Anything Model (SAM) for videos and images.
12. **[Mobile Segment Anything Model (MobileSAM)](mobile-sam.md)**: MobileSAM for mobile applications, by Kyung Hee University.
13. **[Fast Segment Anything Model (FastSAM)](fast-sam.md)**: FastSAM by Image & Video Analysis Group, Institute of Automation, Chinese Academy of Sciences.
14. **[YOLO-NAS](yolo-nas.md)**: YOLO Neural Architecture Search (NAS) Models.
15. **[Realtime Detection Transformers (RT-DETR)](rtdetr.md)**: Baidu's PaddlePaddle Realtime Detection [Transformer](https://www.ultralytics.com/glossary/transformer) (RT-DETR) models.
16. **[YOLO-World](yolo-world.md)**: Real-time Open Vocabulary Object Detection models from Tencent AI Lab.
<p align="center">
<br>