Add utils.ops and nn.modules to tests (#4484)
This commit is contained in:
parent
1cec0185a1
commit
6da8f7f51e
14 changed files with 246 additions and 330 deletions
|
|
@ -13,8 +13,6 @@ import torchvision
|
|||
|
||||
from ultralytics.utils import LOGGER
|
||||
|
||||
from .metrics import box_iou
|
||||
|
||||
|
||||
class Profile(contextlib.ContextDecorator):
|
||||
"""
|
||||
|
|
@ -32,23 +30,17 @@ class Profile(contextlib.ContextDecorator):
|
|||
self.cuda = torch.cuda.is_available()
|
||||
|
||||
def __enter__(self):
|
||||
"""
|
||||
Start timing.
|
||||
"""
|
||||
"""Start timing."""
|
||||
self.start = self.time()
|
||||
return self
|
||||
|
||||
def __exit__(self, type, value, traceback): # noqa
|
||||
"""
|
||||
Stop timing.
|
||||
"""
|
||||
"""Stop timing."""
|
||||
self.dt = self.time() - self.start # delta-time
|
||||
self.t += self.dt # accumulate dt
|
||||
|
||||
def time(self):
|
||||
"""
|
||||
Get current time.
|
||||
"""
|
||||
"""Get current time."""
|
||||
if self.cuda:
|
||||
torch.cuda.synchronize()
|
||||
return time.time()
|
||||
|
|
@ -56,15 +48,15 @@ class Profile(contextlib.ContextDecorator):
|
|||
|
||||
def segment2box(segment, width=640, height=640):
|
||||
"""
|
||||
Convert 1 segment label to 1 box label, applying inside-image constraint, i.e. (xy1, xy2, ...) to (xyxy)
|
||||
Convert 1 segment label to 1 box label, applying inside-image constraint, i.e. (xy1, xy2, ...) to (xyxy).
|
||||
|
||||
Args:
|
||||
segment (torch.Tensor): the segment label
|
||||
width (int): the width of the image. Defaults to 640
|
||||
height (int): The height of the image. Defaults to 640
|
||||
segment (torch.Tensor): the segment label
|
||||
width (int): the width of the image. Defaults to 640
|
||||
height (int): The height of the image. Defaults to 640
|
||||
|
||||
Returns:
|
||||
(np.ndarray): the minimum and maximum x and y values of the segment.
|
||||
(np.ndarray): the minimum and maximum x and y values of the segment.
|
||||
"""
|
||||
# Convert 1 segment label to 1 box label, applying inside-image constraint, i.e. (xy1, xy2, ...) to (xyxy)
|
||||
x, y = segment.T # segment xy
|
||||
|
|
@ -80,16 +72,16 @@ def scale_boxes(img1_shape, boxes, img0_shape, ratio_pad=None, padding=True):
|
|||
(img1_shape) to the shape of a different image (img0_shape).
|
||||
|
||||
Args:
|
||||
img1_shape (tuple): The shape of the image that the bounding boxes are for, in the format of (height, width).
|
||||
boxes (torch.Tensor): the bounding boxes of the objects in the image, in the format of (x1, y1, x2, y2)
|
||||
img0_shape (tuple): the shape of the target image, in the format of (height, width).
|
||||
ratio_pad (tuple): a tuple of (ratio, pad) for scaling the boxes. If not provided, the ratio and pad will be
|
||||
calculated based on the size difference between the two images.
|
||||
padding (bool): If True, assuming the boxes is based on image augmented by yolo style. If False then do regular
|
||||
rescaling.
|
||||
img1_shape (tuple): The shape of the image that the bounding boxes are for, in the format of (height, width).
|
||||
boxes (torch.Tensor): the bounding boxes of the objects in the image, in the format of (x1, y1, x2, y2)
|
||||
img0_shape (tuple): the shape of the target image, in the format of (height, width).
|
||||
ratio_pad (tuple): a tuple of (ratio, pad) for scaling the boxes. If not provided, the ratio and pad will be
|
||||
calculated based on the size difference between the two images.
|
||||
padding (bool): If True, assuming the boxes is based on image augmented by yolo style. If False then do regular
|
||||
rescaling.
|
||||
|
||||
Returns:
|
||||
boxes (torch.Tensor): The scaled bounding boxes, in the format of (x1, y1, x2, y2)
|
||||
boxes (torch.Tensor): The scaled bounding boxes, in the format of (x1, y1, x2, y2)
|
||||
"""
|
||||
if ratio_pad is None: # calculate from img0_shape
|
||||
gain = min(img1_shape[0] / img0_shape[0], img1_shape[1] / img0_shape[1]) # gain = old / new
|
||||
|
|
@ -186,9 +178,7 @@ def non_max_suppression(
|
|||
# Settings
|
||||
# min_wh = 2 # (pixels) minimum box width and height
|
||||
time_limit = 0.5 + max_time_img * bs # seconds to quit after
|
||||
redundant = True # require redundant detections
|
||||
multi_label &= nc > 1 # multiple labels per box (adds 0.5ms/img)
|
||||
merge = False # use merge-NMS
|
||||
|
||||
prediction = prediction.transpose(-1, -2) # shape(1,84,6300) to shape(1,6300,84)
|
||||
prediction[..., :4] = xywh2xyxy(prediction[..., :4]) # xywh to xyxy
|
||||
|
|
@ -226,10 +216,6 @@ def non_max_suppression(
|
|||
if classes is not None:
|
||||
x = x[(x[:, 5:6] == torch.tensor(classes, device=x.device)).any(1)]
|
||||
|
||||
# Apply finite constraint
|
||||
# if not torch.isfinite(x).all():
|
||||
# x = x[torch.isfinite(x).all(1)]
|
||||
|
||||
# Check shape
|
||||
n = x.shape[0] # number of boxes
|
||||
if not n: # no boxes
|
||||
|
|
@ -242,13 +228,18 @@ def non_max_suppression(
|
|||
boxes, scores = x[:, :4] + c, x[:, 4] # boxes (offset by class), scores
|
||||
i = torchvision.ops.nms(boxes, scores, iou_thres) # NMS
|
||||
i = i[:max_det] # limit detections
|
||||
if merge and (1 < n < 3E3): # Merge NMS (boxes merged using weighted mean)
|
||||
# Update boxes as boxes(i,4) = weights(i,n) * boxes(n,4)
|
||||
iou = box_iou(boxes[i], boxes) > iou_thres # iou matrix
|
||||
weights = iou * scores[None] # box weights
|
||||
x[i, :4] = torch.mm(weights, x[:, :4]).float() / weights.sum(1, keepdim=True) # merged boxes
|
||||
if redundant:
|
||||
i = i[iou.sum(1) > 1] # require redundancy
|
||||
|
||||
# # Experimental
|
||||
# merge = False # use merge-NMS
|
||||
# if merge and (1 < n < 3E3): # Merge NMS (boxes merged using weighted mean)
|
||||
# # Update boxes as boxes(i,4) = weights(i,n) * boxes(n,4)
|
||||
# from .metrics import box_iou
|
||||
# iou = box_iou(boxes[i], boxes) > iou_thres # iou matrix
|
||||
# weights = iou * scores[None] # box weights
|
||||
# x[i, :4] = torch.mm(weights, x[:, :4]).float() / weights.sum(1, keepdim=True) # merged boxes
|
||||
# redundant = True # require redundant detections
|
||||
# if redundant:
|
||||
# i = i[iou.sum(1) > 1] # require redundancy
|
||||
|
||||
output[xi] = x[i]
|
||||
if mps:
|
||||
|
|
@ -262,8 +253,7 @@ def non_max_suppression(
|
|||
|
||||
def clip_boxes(boxes, shape):
|
||||
"""
|
||||
It takes a list of bounding boxes and a shape (height, width) and clips the bounding boxes to the
|
||||
shape
|
||||
Takes a list of bounding boxes and a shape (height, width) and clips the bounding boxes to the shape.
|
||||
|
||||
Args:
|
||||
boxes (torch.Tensor): the bounding boxes to clip
|
||||
|
|
@ -303,12 +293,12 @@ def scale_image(masks, im0_shape, ratio_pad=None):
|
|||
Takes a mask, and resizes it to the original image size
|
||||
|
||||
Args:
|
||||
masks (np.ndarray): resized and padded masks/images, [h, w, num]/[h, w, 3].
|
||||
im0_shape (tuple): the original image shape
|
||||
ratio_pad (tuple): the ratio of the padding to the original image.
|
||||
masks (np.ndarray): resized and padded masks/images, [h, w, num]/[h, w, 3].
|
||||
im0_shape (tuple): the original image shape
|
||||
ratio_pad (tuple): the ratio of the padding to the original image.
|
||||
|
||||
Returns:
|
||||
masks (torch.Tensor): The masks that are being returned.
|
||||
masks (torch.Tensor): The masks that are being returned.
|
||||
"""
|
||||
# Rescale coordinates (xyxy) from im1_shape to im0_shape
|
||||
im1_shape = masks.shape
|
||||
|
|
@ -340,6 +330,7 @@ def xyxy2xywh(x):
|
|||
|
||||
Args:
|
||||
x (np.ndarray | torch.Tensor): The input bounding box coordinates in (x1, y1, x2, y2) format.
|
||||
|
||||
Returns:
|
||||
y (np.ndarray | torch.Tensor): The bounding box coordinates in (x, y, width, height) format.
|
||||
"""
|
||||
|
|
@ -359,6 +350,7 @@ def xywh2xyxy(x):
|
|||
|
||||
Args:
|
||||
x (np.ndarray | torch.Tensor): The input bounding box coordinates in (x, y, width, height) format.
|
||||
|
||||
Returns:
|
||||
y (np.ndarray | torch.Tensor): The bounding box coordinates in (x1, y1, x2, y2) format.
|
||||
"""
|
||||
|
|
@ -407,6 +399,7 @@ def xyxy2xywhn(x, w=640, h=640, clip=False, eps=0.0):
|
|||
h (int): The height of the image. Defaults to 640
|
||||
clip (bool): If True, the boxes will be clipped to the image boundaries. Defaults to False
|
||||
eps (float): The minimum value of the box's width and height. Defaults to 0.0
|
||||
|
||||
Returns:
|
||||
y (np.ndarray | torch.Tensor): The bounding box coordinates in (x, y, width, height, normalized) format
|
||||
"""
|
||||
|
|
@ -421,31 +414,13 @@ def xyxy2xywhn(x, w=640, h=640, clip=False, eps=0.0):
|
|||
return y
|
||||
|
||||
|
||||
def xyn2xy(x, w=640, h=640, padw=0, padh=0):
|
||||
"""
|
||||
Convert normalized coordinates to pixel coordinates of shape (n,2)
|
||||
|
||||
Args:
|
||||
x (np.ndarray | torch.Tensor): The input tensor of normalized bounding box coordinates
|
||||
w (int): The width of the image. Defaults to 640
|
||||
h (int): The height of the image. Defaults to 640
|
||||
padw (int): The width of the padding. Defaults to 0
|
||||
padh (int): The height of the padding. Defaults to 0
|
||||
Returns:
|
||||
y (np.ndarray | torch.Tensor): The x and y coordinates of the top left corner of the bounding box
|
||||
"""
|
||||
y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
|
||||
y[..., 0] = w * x[..., 0] + padw # top left x
|
||||
y[..., 1] = h * x[..., 1] + padh # top left y
|
||||
return y
|
||||
|
||||
|
||||
def xywh2ltwh(x):
|
||||
"""
|
||||
Convert the bounding box format from [x, y, w, h] to [x1, y1, w, h], where x1, y1 are the top-left coordinates.
|
||||
|
||||
Args:
|
||||
x (np.ndarray | torch.Tensor): The input tensor with the bounding box coordinates in the xywh format
|
||||
|
||||
Returns:
|
||||
y (np.ndarray | torch.Tensor): The bounding box coordinates in the xyltwh format
|
||||
"""
|
||||
|
|
@ -460,9 +435,10 @@ def xyxy2ltwh(x):
|
|||
Convert nx4 bounding boxes from [x1, y1, x2, y2] to [x1, y1, w, h], where xy1=top-left, xy2=bottom-right
|
||||
|
||||
Args:
|
||||
x (np.ndarray | torch.Tensor): The input tensor with the bounding boxes coordinates in the xyxy format
|
||||
x (np.ndarray | torch.Tensor): The input tensor with the bounding boxes coordinates in the xyxy format
|
||||
|
||||
Returns:
|
||||
y (np.ndarray | torch.Tensor): The bounding box coordinates in the xyltwh format.
|
||||
y (np.ndarray | torch.Tensor): The bounding box coordinates in the xyltwh format.
|
||||
"""
|
||||
y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
|
||||
y[..., 2] = x[..., 2] - x[..., 0] # width
|
||||
|
|
@ -475,7 +451,10 @@ def ltwh2xywh(x):
|
|||
Convert nx4 boxes from [x1, y1, w, h] to [x, y, w, h] where xy1=top-left, xy=center
|
||||
|
||||
Args:
|
||||
x (torch.Tensor): the input tensor
|
||||
x (torch.Tensor): the input tensor
|
||||
|
||||
Returns:
|
||||
y (np.ndarray | torch.Tensor): The bounding box coordinates in the xywh format.
|
||||
"""
|
||||
y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
|
||||
y[..., 0] = x[..., 0] + x[..., 2] / 2 # center x
|
||||
|
|
@ -493,14 +472,8 @@ def xyxyxyxy2xywhr(corners):
|
|||
Returns:
|
||||
(numpy.ndarray | torch.Tensor): Converted data in [cx, cy, w, h, rotation] format of shape (n, 5).
|
||||
"""
|
||||
if isinstance(corners, torch.Tensor):
|
||||
is_numpy = False
|
||||
atan2 = torch.atan2
|
||||
sqrt = torch.sqrt
|
||||
else:
|
||||
is_numpy = True
|
||||
atan2 = np.arctan2
|
||||
sqrt = np.sqrt
|
||||
is_numpy = isinstance(corners, np.ndarray)
|
||||
atan2, sqrt = (np.arctan2, np.sqrt) if is_numpy else (torch.atan2, torch.sqrt)
|
||||
|
||||
x1, y1, x2, y2, x3, y3, x4, y4 = corners.T
|
||||
cx = (x1 + x3) / 2
|
||||
|
|
@ -527,14 +500,8 @@ def xywhr2xyxyxyxy(center):
|
|||
Returns:
|
||||
(numpy.ndarray | torch.Tensor): Converted corner points of shape (n, 8).
|
||||
"""
|
||||
if isinstance(center, torch.Tensor):
|
||||
is_numpy = False
|
||||
cos = torch.cos
|
||||
sin = torch.sin
|
||||
else:
|
||||
is_numpy = True
|
||||
cos = np.cos
|
||||
sin = np.sin
|
||||
is_numpy = isinstance(center, np.ndarray)
|
||||
cos, sin = (np.cos, np.sin) if is_numpy else (torch.cos, torch.sin)
|
||||
|
||||
cx, cy, w, h, rotation = center.T
|
||||
rotation *= math.pi / 180.0 # degrees to radians
|
||||
|
|
@ -567,10 +534,10 @@ def ltwh2xyxy(x):
|
|||
It converts the bounding box from [x1, y1, w, h] to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right
|
||||
|
||||
Args:
|
||||
x (np.ndarray | torch.Tensor): the input image
|
||||
x (np.ndarray | torch.Tensor): the input image
|
||||
|
||||
Returns:
|
||||
y (np.ndarray | torch.Tensor): the xyxy coordinates of the bounding boxes.
|
||||
y (np.ndarray | torch.Tensor): the xyxy coordinates of the bounding boxes.
|
||||
"""
|
||||
y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
|
||||
y[..., 2] = x[..., 2] + x[..., 0] # width
|
||||
|
|
@ -583,10 +550,10 @@ def segments2boxes(segments):
|
|||
It converts segment labels to box labels, i.e. (cls, xy1, xy2, ...) to (cls, xywh)
|
||||
|
||||
Args:
|
||||
segments (list): list of segments, each segment is a list of points, each point is a list of x, y coordinates
|
||||
segments (list): list of segments, each segment is a list of points, each point is a list of x, y coordinates
|
||||
|
||||
Returns:
|
||||
(np.ndarray): the xywh coordinates of the bounding boxes.
|
||||
(np.ndarray): the xywh coordinates of the bounding boxes.
|
||||
"""
|
||||
boxes = []
|
||||
for s in segments:
|
||||
|
|
@ -600,11 +567,11 @@ def resample_segments(segments, n=1000):
|
|||
Inputs a list of segments (n,2) and returns a list of segments (n,2) up-sampled to n points each.
|
||||
|
||||
Args:
|
||||
segments (list): a list of (n,2) arrays, where n is the number of points in the segment.
|
||||
n (int): number of points to resample the segment to. Defaults to 1000
|
||||
segments (list): a list of (n,2) arrays, where n is the number of points in the segment.
|
||||
n (int): number of points to resample the segment to. Defaults to 1000
|
||||
|
||||
Returns:
|
||||
segments (list): the resampled segments.
|
||||
segments (list): the resampled segments.
|
||||
"""
|
||||
for i, s in enumerate(segments):
|
||||
s = np.concatenate((s, s[0:1, :]), axis=0)
|
||||
|
|
@ -617,14 +584,14 @@ def resample_segments(segments, n=1000):
|
|||
|
||||
def crop_mask(masks, boxes):
|
||||
"""
|
||||
It takes a mask and a bounding box, and returns a mask that is cropped to the bounding box
|
||||
It takes a mask and a bounding box, and returns a mask that is cropped to the bounding box.
|
||||
|
||||
Args:
|
||||
masks (torch.Tensor): [n, h, w] tensor of masks
|
||||
boxes (torch.Tensor): [n, 4] tensor of bbox coordinates in relative point form
|
||||
masks (torch.Tensor): [n, h, w] tensor of masks
|
||||
boxes (torch.Tensor): [n, 4] tensor of bbox coordinates in relative point form
|
||||
|
||||
Returns:
|
||||
(torch.Tensor): The masks are being cropped to the bounding box.
|
||||
(torch.Tensor): The masks are being cropped to the bounding box.
|
||||
"""
|
||||
n, h, w = masks.shape
|
||||
x1, y1, x2, y2 = torch.chunk(boxes[:, :, None], 4, 1) # x1 shape(n,1,1)
|
||||
|
|
@ -636,17 +603,17 @@ def crop_mask(masks, boxes):
|
|||
|
||||
def process_mask_upsample(protos, masks_in, bboxes, shape):
|
||||
"""
|
||||
It takes the output of the mask head, and applies the mask to the bounding boxes. This produces masks of higher
|
||||
Takes the output of the mask head, and applies the mask to the bounding boxes. This produces masks of higher
|
||||
quality but is slower.
|
||||
|
||||
Args:
|
||||
protos (torch.Tensor): [mask_dim, mask_h, mask_w]
|
||||
masks_in (torch.Tensor): [n, mask_dim], n is number of masks after nms
|
||||
bboxes (torch.Tensor): [n, 4], n is number of masks after nms
|
||||
shape (tuple): the size of the input image (h,w)
|
||||
protos (torch.Tensor): [mask_dim, mask_h, mask_w]
|
||||
masks_in (torch.Tensor): [n, mask_dim], n is number of masks after nms
|
||||
bboxes (torch.Tensor): [n, 4], n is number of masks after nms
|
||||
shape (tuple): the size of the input image (h,w)
|
||||
|
||||
Returns:
|
||||
(torch.Tensor): The upsampled masks.
|
||||
(torch.Tensor): The upsampled masks.
|
||||
"""
|
||||
c, mh, mw = protos.shape # CHW
|
||||
masks = (masks_in @ protos.float().view(c, -1)).sigmoid().view(-1, mh, mw)
|
||||
|
|
@ -692,13 +659,13 @@ def process_mask_native(protos, masks_in, bboxes, shape):
|
|||
It takes the output of the mask head, and crops it after upsampling to the bounding boxes.
|
||||
|
||||
Args:
|
||||
protos (torch.Tensor): [mask_dim, mask_h, mask_w]
|
||||
masks_in (torch.Tensor): [n, mask_dim], n is number of masks after nms
|
||||
bboxes (torch.Tensor): [n, 4], n is number of masks after nms
|
||||
shape (tuple): the size of the input image (h,w)
|
||||
protos (torch.Tensor): [mask_dim, mask_h, mask_w]
|
||||
masks_in (torch.Tensor): [n, mask_dim], n is number of masks after nms
|
||||
bboxes (torch.Tensor): [n, 4], n is number of masks after nms
|
||||
shape (tuple): the size of the input image (h,w)
|
||||
|
||||
Returns:
|
||||
masks (torch.Tensor): The returned masks with dimensions [h, w, n]
|
||||
masks (torch.Tensor): The returned masks with dimensions [h, w, n]
|
||||
"""
|
||||
c, mh, mw = protos.shape # CHW
|
||||
masks = (masks_in @ protos.float().view(c, -1)).sigmoid().view(-1, mh, mw)
|
||||
|
|
@ -733,19 +700,19 @@ def scale_masks(masks, shape, padding=True):
|
|||
|
||||
def scale_coords(img1_shape, coords, img0_shape, ratio_pad=None, normalize=False, padding=True):
|
||||
"""
|
||||
Rescale segment coordinates (xyxy) from img1_shape to img0_shape
|
||||
Rescale segment coordinates (xy) from img1_shape to img0_shape
|
||||
|
||||
Args:
|
||||
img1_shape (tuple): The shape of the image that the coords are from.
|
||||
coords (torch.Tensor): the coords to be scaled
|
||||
img0_shape (tuple): the shape of the image that the segmentation is being applied to
|
||||
ratio_pad (tuple): the ratio of the image size to the padded image size.
|
||||
normalize (bool): If True, the coordinates will be normalized to the range [0, 1]. Defaults to False
|
||||
padding (bool): If True, assuming the boxes is based on image augmented by yolo style. If False then do regular
|
||||
rescaling.
|
||||
img1_shape (tuple): The shape of the image that the coords are from.
|
||||
coords (torch.Tensor): the coords to be scaled of shape n,2.
|
||||
img0_shape (tuple): the shape of the image that the segmentation is being applied to.
|
||||
ratio_pad (tuple): the ratio of the image size to the padded image size.
|
||||
normalize (bool): If True, the coordinates will be normalized to the range [0, 1]. Defaults to False.
|
||||
padding (bool): If True, assuming the boxes is based on image augmented by yolo style. If False then do regular
|
||||
rescaling.
|
||||
|
||||
Returns:
|
||||
coords (torch.Tensor): the segmented image.
|
||||
coords (torch.Tensor): The scaled coordinates.
|
||||
"""
|
||||
if ratio_pad is None: # calculate from img0_shape
|
||||
gain = min(img1_shape[0] / img0_shape[0], img1_shape[1] / img0_shape[1]) # gain = old / new
|
||||
|
|
@ -771,11 +738,11 @@ def masks2segments(masks, strategy='largest'):
|
|||
It takes a list of masks(n,h,w) and returns a list of segments(n,xy)
|
||||
|
||||
Args:
|
||||
masks (torch.Tensor): the output of the model, which is a tensor of shape (batch_size, 160, 160)
|
||||
strategy (str): 'concat' or 'largest'. Defaults to largest
|
||||
masks (torch.Tensor): the output of the model, which is a tensor of shape (batch_size, 160, 160)
|
||||
strategy (str): 'concat' or 'largest'. Defaults to largest
|
||||
|
||||
Returns:
|
||||
segments (List): list of segment masks
|
||||
segments (List): list of segment masks
|
||||
"""
|
||||
segments = []
|
||||
for x in masks.int().cpu().numpy().astype('uint8'):
|
||||
|
|
@ -796,9 +763,9 @@ def clean_str(s):
|
|||
Cleans a string by replacing special characters with underscore _
|
||||
|
||||
Args:
|
||||
s (str): a string needing special characters replaced
|
||||
s (str): a string needing special characters replaced
|
||||
|
||||
Returns:
|
||||
(str): a string with special characters replaced by an underscore _
|
||||
(str): a string with special characters replaced by an underscore _
|
||||
"""
|
||||
return re.sub(pattern='[|@#!¡·$€%&()=?¿^*;:,¨´><+]', repl='_', string=s)
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue