Add FAQ sections to Modes and Tasks (#14181)
Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com> Co-authored-by: UltralyticsAssistant <web@ultralytics.com> Co-authored-by: Abirami Vina <abirami.vina@gmail.com> Co-authored-by: RizwanMunawar <chr043416@gmail.com> Co-authored-by: Muhammad Rizwan Munawar <muhammadrizwanmunawar123@gmail.com>
This commit is contained in:
parent
e285d3d1b2
commit
6c13bea7b8
39 changed files with 2247 additions and 481 deletions
|
|
@ -201,3 +201,91 @@ Available YOLOv8-obb export formats are in the table below. You can export to an
|
|||
| [NCNN](../integrations/ncnn.md) | `ncnn` | `yolov8n-obb_ncnn_model/` | ✅ | `imgsz`, `half`, `batch` |
|
||||
|
||||
See full `export` details in the [Export](../modes/export.md) page.
|
||||
|
||||
## FAQ
|
||||
|
||||
### What are Oriented Bounding Boxes (OBB) and how do they differ from regular bounding boxes?
|
||||
|
||||
Oriented Bounding Boxes (OBB) include an additional angle to enhance object localization accuracy in images. Unlike regular bounding boxes, which are axis-aligned rectangles, OBBs can rotate to fit the orientation of the object better. This is particularly useful for applications requiring precise object placement, such as aerial or satellite imagery ([Dataset Guide](../datasets/obb/index.md)).
|
||||
|
||||
### How do I train a YOLOv8n-obb model using a custom dataset?
|
||||
|
||||
To train a YOLOv8n-obb model with a custom dataset, follow the example below using Python or CLI:
|
||||
|
||||
!!! Example
|
||||
|
||||
=== "Python"
|
||||
|
||||
```python
|
||||
from ultralytics import YOLO
|
||||
|
||||
# Load a pretrained model
|
||||
model = YOLO("yolov8n-obb.pt")
|
||||
|
||||
# Train the model
|
||||
results = model.train(data="path/to/custom_dataset.yaml", epochs=100, imgsz=640)
|
||||
```
|
||||
|
||||
=== "CLI"
|
||||
|
||||
```bash
|
||||
yolo obb train data=path/to/custom_dataset.yaml model=yolov8n-obb.pt epochs=100 imgsz=640
|
||||
```
|
||||
|
||||
For more training arguments, check the [Configuration](../usage/cfg.md) section.
|
||||
|
||||
### What datasets can I use for training YOLOv8-OBB models?
|
||||
|
||||
YOLOv8-OBB models are pretrained on datasets like [DOTAv1](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/datasets/DOTAv1.yaml) but you can use any dataset formatted for OBB. Detailed information on OBB dataset formats can be found in the [Dataset Guide](../datasets/obb/index.md).
|
||||
|
||||
### How can I export a YOLOv8-OBB model to ONNX format?
|
||||
|
||||
Exporting a YOLOv8-OBB model to ONNX format is straightforward using either Python or CLI:
|
||||
|
||||
!!! Example
|
||||
|
||||
=== "Python"
|
||||
|
||||
```python
|
||||
from ultralytics import YOLO
|
||||
|
||||
# Load a model
|
||||
model = YOLO("yolov8n-obb.pt")
|
||||
|
||||
# Export the model
|
||||
model.export(format="onnx")
|
||||
```
|
||||
|
||||
=== "CLI"
|
||||
|
||||
```bash
|
||||
yolo export model=yolov8n-obb.pt format=onnx
|
||||
```
|
||||
|
||||
For more export formats and details, refer to the [Export](../modes/export.md) page.
|
||||
|
||||
### How do I validate the accuracy of a YOLOv8n-obb model?
|
||||
|
||||
To validate a YOLOv8n-obb model, you can use Python or CLI commands as shown below:
|
||||
|
||||
!!! Example
|
||||
|
||||
=== "Python"
|
||||
|
||||
```python
|
||||
from ultralytics import YOLO
|
||||
|
||||
# Load a model
|
||||
model = YOLO("yolov8n-obb.pt")
|
||||
|
||||
# Validate the model
|
||||
metrics = model.val(data="dota8.yaml")
|
||||
```
|
||||
|
||||
=== "CLI"
|
||||
|
||||
```bash
|
||||
yolo obb val model=yolov8n-obb.pt data=dota8.yaml
|
||||
```
|
||||
|
||||
See full validation details in the [Val](../modes/val.md) section.
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue