Fix undefined ‘im_array’ bug in predict.md (#8565)

Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com>
Co-authored-by: fang_chenfang <1217690899@qq.com>
This commit is contained in:
Glenn Jocher 2024-03-01 00:53:17 +01:00 committed by GitHub
parent aa592efda5
commit 6bdf8dfaa2
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
13 changed files with 23 additions and 23 deletions

View file

@ -101,6 +101,6 @@ Benchmarks will attempt to run automatically on all possible export formats belo
| [TF Edge TPU](https://coral.ai/docs/edgetpu/models-intro/) | `edgetpu` | `yolov8n_edgetpu.tflite` | ✅ | `imgsz` |
| [TF.js](https://www.tensorflow.org/js) | `tfjs` | `yolov8n_web_model/` | ✅ | `imgsz`, `half`, `int8` |
| [PaddlePaddle](https://github.com/PaddlePaddle) | `paddle` | `yolov8n_paddle_model/` | ✅ | `imgsz` |
| [ncnn](https://github.com/Tencent/ncnn) | `ncnn` | `yolov8n_ncnn_model/` | ✅ | `imgsz`, `half` |
| [NCNN](https://github.com/Tencent/ncnn) | `ncnn` | `yolov8n_ncnn_model/` | ✅ | `imgsz`, `half` |
See full `export` details in the [Export](https://docs.ultralytics.com/modes/export/) page.

View file

@ -108,4 +108,4 @@ Available YOLOv8 export formats are in the table below. You can export to any fo
| [TF Edge TPU](https://coral.ai/docs/edgetpu/models-intro/) | `edgetpu` | `yolov8n_edgetpu.tflite` | ✅ | `imgsz` |
| [TF.js](https://www.tensorflow.org/js) | `tfjs` | `yolov8n_web_model/` | ✅ | `imgsz`, `half`, `int8` |
| [PaddlePaddle](https://github.com/PaddlePaddle) | `paddle` | `yolov8n_paddle_model/` | ✅ | `imgsz` |
| [ncnn](https://github.com/Tencent/ncnn) | `ncnn` | `yolov8n_ncnn_model/` | ✅ | `imgsz`, `half` |
| [NCNN](https://github.com/Tencent/ncnn) | `ncnn` | `yolov8n_ncnn_model/` | ✅ | `imgsz`, `half` |

View file

@ -683,7 +683,7 @@ The `plot()` method in `Results` objects facilitates visualization of prediction
for i, r in enumerate(results):
# Plot results image
im_bgr = r.plot() # BGR-order numpy array
im_rgb = Image.fromarray(im_array[..., ::-1]) # RGB-order PIL image
im_rgb = Image.fromarray(im_bgr[..., ::-1]) # RGB-order PIL image
# Show results to screen (in supported environments)
r.show()