ultralytics 8.2.29 new fractional AutoBatch feature (#13446)

Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com>
Co-authored-by: Burhan <62214284+Burhan-Q@users.noreply.github.com>
Co-authored-by: UltralyticsAssistant <web@ultralytics.com>
This commit is contained in:
Glenn Jocher 2024-06-09 00:28:11 +02:00 committed by GitHub
parent 2fe0946376
commit 6a234f3639
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
12 changed files with 92 additions and 49 deletions

View file

@ -1,6 +1,6 @@
## Models
Welcome to the Ultralytics Models directory! Here you will find a wide variety of pre-configured model configuration files (`*.yaml`s) that can be used to create custom YOLO models. The models in this directory have been expertly crafted and fine-tuned by the Ultralytics team to provide the best performance for a wide range of object detection and image segmentation tasks.
Welcome to the [Ultralytics](https://ultralytics.com) Models directory! Here you will find a wide variety of pre-configured model configuration files (`*.yaml`s) that can be used to create custom YOLO models. The models in this directory have been expertly crafted and fine-tuned by the Ultralytics team to provide the best performance for a wide range of object detection and image segmentation tasks.
These model configurations cover a wide range of scenarios, from simple object detection to more complex tasks like instance segmentation and object tracking. They are also designed to run efficiently on a variety of hardware platforms, from CPUs to GPUs. Whether you are a seasoned machine learning practitioner or just getting started with YOLO, this directory provides a great starting point for your custom model development needs.
@ -8,26 +8,34 @@ To get started, simply browse through the models in this directory and find one
### Usage
Model `*.yaml` files may be used directly in the Command Line Interface (CLI) with a `yolo` command:
Model `*.yaml` files may be used directly in the [Command Line Interface (CLI)](https://docs.ultralytics.com/usage/cli) with a `yolo` command:
```bash
# Train a YOLOv8n model using the coco8 dataset for 100 epochs
yolo task=detect mode=train model=yolov8n.yaml data=coco8.yaml epochs=100
```
They may also be used directly in a Python environment, and accepts the same [arguments](https://docs.ultralytics.com/usage/cfg/) as in the CLI example above:
They may also be used directly in a Python environment, and accept the same [arguments](https://docs.ultralytics.com/usage/cfg/) as in the CLI example above:
```python
from ultralytics import YOLO
model = YOLO("model.yaml") # build a YOLOv8n model from scratch
# YOLO("model.pt") use pre-trained model if available
model.info() # display model information
model.train(data="coco8.yaml", epochs=100) # train the model
# Initialize a YOLOv8n model from a YAML configuration file
model = YOLO("model.yaml")
# If a pre-trained model is available, use it instead
# model = YOLO("model.pt")
# Display model information
model.info()
# Train the model using the COCO8 dataset for 100 epochs
model.train(data="coco8.yaml", epochs=100)
```
## Pre-trained Model Architectures
Ultralytics supports many model architectures. Visit https://docs.ultralytics.com/models to view detailed information and usage. Any of these models can be used by loading their configs or pretrained checkpoints if available.
Ultralytics supports many model architectures. Visit [Ultralytics Models](https://docs.ultralytics.com/models) to view detailed information and usage. Any of these models can be used by loading their configurations or pretrained checkpoints if available.
## Contribute New Models