Docs Ruff codeblocks reformat and fix (#12847)

Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com>
This commit is contained in:
Glenn Jocher 2024-05-19 19:13:04 +02:00 committed by GitHub
parent be5cf7a033
commit 68031133fd
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
9 changed files with 167 additions and 178 deletions

View file

@ -63,13 +63,12 @@ After performing the [Segment Task](../tasks/segment.md), it's sometimes desirab
# (2) Iterate detection results (helpful for multiple images)
for r in res:
img = np.copy(r.orig_img)
img_name = Path(r.path).stem # source image base-name
img_name = Path(r.path).stem # source image base-name
# Iterate each object contour (multiple detections)
for ci,c in enumerate(r):
for ci, c in enumerate(r):
# (1) Get detection class name
label = c.names[c.boxes.cls.tolist().pop()]
```
1. To learn more about working with detection results, see [Boxes Section for Predict Mode](../modes/predict.md#boxes).
@ -98,12 +97,7 @@ After performing the [Segment Task](../tasks/segment.md), it's sometimes desirab
# Draw contour onto mask
_ = cv2.drawContours(b_mask,
[contour],
-1,
(255, 255, 255),
cv2.FILLED)
_ = cv2.drawContours(b_mask, [contour], -1, (255, 255, 255), cv2.FILLED)
```
1. For more info on `c.masks.xy` see [Masks Section from Predict Mode](../modes/predict.md#masks).
@ -280,16 +274,16 @@ import cv2
import numpy as np
from ultralytics import YOLO
m = YOLO('yolov8n-seg.pt')#(4)!
res = m.predict()#(3)!
m = YOLO("yolov8n-seg.pt") # (4)!
res = m.predict() # (3)!
# iterate detection results (5)
# Iterate detection results (5)
for r in res:
img = np.copy(r.orig_img)
img_name = Path(r.path).stem
# iterate each object contour (6)
for ci,c in enumerate(r):
# Iterate each object contour (6)
for ci, c in enumerate(r):
label = c.names[c.boxes.cls.tolist().pop()]
b_mask = np.zeros(img.shape[:2], np.uint8)
@ -312,7 +306,6 @@ for r in res:
iso_crop = isolated[y1:y2, x1:x2]
# TODO your actions go here (2)
```
1. The line populating `contour` is combined into a single line here, where it was split to multiple above.