Docs Ruff codeblocks reformat and fix (#12847)

Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com>
This commit is contained in:
Glenn Jocher 2024-05-19 19:13:04 +02:00 committed by GitHub
parent be5cf7a033
commit 68031133fd
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
9 changed files with 167 additions and 178 deletions

View file

@ -35,7 +35,7 @@ Here's a compilation of in-depth guides to help you master different aspects of
- [Conda Quickstart](conda-quickstart.md) 🚀 NEW: Step-by-step guide to setting up a [Conda](https://anaconda.org/conda-forge/ultralytics) environment for Ultralytics. Learn how to install and start using the Ultralytics package efficiently with Conda.
- [Docker Quickstart](docker-quickstart.md) 🚀 NEW: Complete guide to setting up and using Ultralytics YOLO models with [Docker](https://hub.docker.com/r/ultralytics/ultralytics). Learn how to install Docker, manage GPU support, and run YOLO models in isolated containers for consistent development and deployment.
- [Raspberry Pi](raspberry-pi.md) 🚀 NEW: Quickstart tutorial to run YOLO models to the latest Raspberry Pi hardware.
- [Nvidia-Jetson](nvidia-jetson.md)🚀 NEW: Quickstart guide for deploying YOLO models on Nvidia Jetson devices.
- [NVIDIA-Jetson](nvidia-jetson.md)🚀 NEW: Quickstart guide for deploying YOLO models on NVIDIA Jetson devices.
- [Triton Inference Server Integration](triton-inference-server.md) 🚀 NEW: Dive into the integration of Ultralytics YOLOv8 with NVIDIA's Triton Inference Server for scalable and efficient deep learning inference deployments.
- [YOLO Thread-Safe Inference](yolo-thread-safe-inference.md) 🚀 NEW: Guidelines for performing inference with YOLO models in a thread-safe manner. Learn the importance of thread safety and best practices to prevent race conditions and ensure consistent predictions.
- [Isolating Segmentation Objects](isolating-segmentation-objects.md) 🚀 NEW: Step-by-step recipe and explanation on how to extract and/or isolate objects from images using Ultralytics Segmentation.

View file

@ -63,13 +63,12 @@ After performing the [Segment Task](../tasks/segment.md), it's sometimes desirab
# (2) Iterate detection results (helpful for multiple images)
for r in res:
img = np.copy(r.orig_img)
img_name = Path(r.path).stem # source image base-name
img_name = Path(r.path).stem # source image base-name
# Iterate each object contour (multiple detections)
for ci,c in enumerate(r):
for ci, c in enumerate(r):
# (1) Get detection class name
label = c.names[c.boxes.cls.tolist().pop()]
```
1. To learn more about working with detection results, see [Boxes Section for Predict Mode](../modes/predict.md#boxes).
@ -98,12 +97,7 @@ After performing the [Segment Task](../tasks/segment.md), it's sometimes desirab
# Draw contour onto mask
_ = cv2.drawContours(b_mask,
[contour],
-1,
(255, 255, 255),
cv2.FILLED)
_ = cv2.drawContours(b_mask, [contour], -1, (255, 255, 255), cv2.FILLED)
```
1. For more info on `c.masks.xy` see [Masks Section from Predict Mode](../modes/predict.md#masks).
@ -280,16 +274,16 @@ import cv2
import numpy as np
from ultralytics import YOLO
m = YOLO('yolov8n-seg.pt')#(4)!
res = m.predict()#(3)!
m = YOLO("yolov8n-seg.pt") # (4)!
res = m.predict() # (3)!
# iterate detection results (5)
# Iterate detection results (5)
for r in res:
img = np.copy(r.orig_img)
img_name = Path(r.path).stem
# iterate each object contour (6)
for ci,c in enumerate(r):
# Iterate each object contour (6)
for ci, c in enumerate(r):
label = c.names[c.boxes.cls.tolist().pop()]
b_mask = np.zeros(img.shape[:2], np.uint8)
@ -312,7 +306,6 @@ for r in res:
iso_crop = isolated[y1:y2, x1:x2]
# TODO your actions go here (2)
```
1. The line populating `contour` is combined into a single line here, where it was split to multiple above.

View file

@ -61,9 +61,9 @@ The VSCode compatible protocols for viewing images using the integrated terminal
# Run inference on an image
results = model.predict(source="ultralytics/assets/bus.jpg")
# Plot inference results
plot = results[0].plot() #(1)!
plot = results[0].plot() # (1)!
```
1. See [plot method parameters](../modes/predict.md#plot-method-parameters) to see possible arguments to use.
@ -73,9 +73,9 @@ The VSCode compatible protocols for viewing images using the integrated terminal
```{ .py .annotate }
# Results image as bytes
im_bytes = cv.imencode(
".png", #(1)!
".png", # (1)!
plot,
)[1].tobytes() #(2)!
)[1].tobytes() # (2)!
# Image bytes as a file-like object
mem_file = io.BytesIO(im_bytes)
@ -110,9 +110,8 @@ The VSCode compatible protocols for viewing images using the integrated terminal
import io
import cv2 as cv
from ultralytics import YOLO
from sixel import SixelWriter
from ultralytics import YOLO
# Load a model
model = YOLO("yolov8n.pt")
@ -121,13 +120,13 @@ model = YOLO("yolov8n.pt")
results = model.predict(source="ultralytics/assets/bus.jpg")
# Plot inference results
plot = results[0].plot() #(3)!
plot = results[0].plot() # (3)!
# Results image as bytes
im_bytes = cv.imencode(
".png", #(1)!
".png", # (1)!
plot,
)[1].tobytes() #(2)!
)[1].tobytes() # (2)!
mem_file = io.BytesIO(im_bytes)
w = SixelWriter()