Update queue-management solution (#16772)
Co-authored-by: UltralyticsAssistant <web@ultralytics.com>
This commit is contained in:
parent
094faeb722
commit
6509757879
5 changed files with 80 additions and 152 deletions
|
|
@ -40,10 +40,9 @@ Queue management using [Ultralytics YOLO11](https://github.com/ultralytics/ultra
|
||||||
```python
|
```python
|
||||||
import cv2
|
import cv2
|
||||||
|
|
||||||
from ultralytics import YOLO, solutions
|
from ultralytics import solutions
|
||||||
|
|
||||||
model = YOLO("yolo11n.pt")
|
cap = cv2.VideoCapture("Path/to/video/file.mp4")
|
||||||
cap = cv2.VideoCapture("path/to/video/file.mp4")
|
|
||||||
|
|
||||||
assert cap.isOpened(), "Error reading video file"
|
assert cap.isOpened(), "Error reading video file"
|
||||||
w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH, cv2.CAP_PROP_FRAME_HEIGHT, cv2.CAP_PROP_FPS))
|
w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH, cv2.CAP_PROP_FRAME_HEIGHT, cv2.CAP_PROP_FPS))
|
||||||
|
|
@ -53,18 +52,15 @@ Queue management using [Ultralytics YOLO11](https://github.com/ultralytics/ultra
|
||||||
queue_region = [(20, 400), (1080, 404), (1080, 360), (20, 360)]
|
queue_region = [(20, 400), (1080, 404), (1080, 360), (20, 360)]
|
||||||
|
|
||||||
queue = solutions.QueueManager(
|
queue = solutions.QueueManager(
|
||||||
names=model.names,
|
model="yolo11n.pt",
|
||||||
reg_pts=queue_region,
|
region=queue_region,
|
||||||
line_thickness=3,
|
|
||||||
)
|
)
|
||||||
|
|
||||||
while cap.isOpened():
|
while cap.isOpened():
|
||||||
success, im0 = cap.read()
|
success, im0 = cap.read()
|
||||||
|
|
||||||
if success:
|
if success:
|
||||||
tracks = model.track(im0, persist=True)
|
out = queue.process_queue(im0)
|
||||||
out = queue.process_queue(im0, tracks)
|
|
||||||
|
|
||||||
video_writer.write(im0)
|
video_writer.write(im0)
|
||||||
if cv2.waitKey(1) & 0xFF == ord("q"):
|
if cv2.waitKey(1) & 0xFF == ord("q"):
|
||||||
break
|
break
|
||||||
|
|
@ -82,10 +78,9 @@ Queue management using [Ultralytics YOLO11](https://github.com/ultralytics/ultra
|
||||||
```python
|
```python
|
||||||
import cv2
|
import cv2
|
||||||
|
|
||||||
from ultralytics import YOLO, solutions
|
from ultralytics import solutions
|
||||||
|
|
||||||
model = YOLO("yolo11n.pt")
|
cap = cv2.VideoCapture("Path/to/video/file.mp4")
|
||||||
cap = cv2.VideoCapture("path/to/video/file.mp4")
|
|
||||||
|
|
||||||
assert cap.isOpened(), "Error reading video file"
|
assert cap.isOpened(), "Error reading video file"
|
||||||
w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH, cv2.CAP_PROP_FRAME_HEIGHT, cv2.CAP_PROP_FPS))
|
w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH, cv2.CAP_PROP_FRAME_HEIGHT, cv2.CAP_PROP_FPS))
|
||||||
|
|
@ -95,18 +90,15 @@ Queue management using [Ultralytics YOLO11](https://github.com/ultralytics/ultra
|
||||||
queue_region = [(20, 400), (1080, 404), (1080, 360), (20, 360)]
|
queue_region = [(20, 400), (1080, 404), (1080, 360), (20, 360)]
|
||||||
|
|
||||||
queue = solutions.QueueManager(
|
queue = solutions.QueueManager(
|
||||||
names=model.names,
|
model="yolo11n.pt",
|
||||||
reg_pts=queue_region,
|
classes=3,
|
||||||
line_thickness=3,
|
|
||||||
)
|
)
|
||||||
|
|
||||||
while cap.isOpened():
|
while cap.isOpened():
|
||||||
success, im0 = cap.read()
|
success, im0 = cap.read()
|
||||||
|
|
||||||
if success:
|
if success:
|
||||||
tracks = model.track(im0, persist=True, classes=0) # Only person class
|
out = queue.process_queue(im0)
|
||||||
out = queue.process_queue(im0, tracks)
|
|
||||||
|
|
||||||
video_writer.write(im0)
|
video_writer.write(im0)
|
||||||
if cv2.waitKey(1) & 0xFF == ord("q"):
|
if cv2.waitKey(1) & 0xFF == ord("q"):
|
||||||
break
|
break
|
||||||
|
|
@ -121,13 +113,12 @@ Queue management using [Ultralytics YOLO11](https://github.com/ultralytics/ultra
|
||||||
|
|
||||||
### Arguments `QueueManager`
|
### Arguments `QueueManager`
|
||||||
|
|
||||||
| Name | Type | Default | Description |
|
| Name | Type | Default | Description |
|
||||||
| ---------------- | ---------------- | -------------------------- | -------------------------------------------------------------------------------- |
|
| ------------ | ------ | -------------------------- | ---------------------------------------------------- |
|
||||||
| `names` | `dict` | `model.names` | A dictionary mapping class IDs to class names. |
|
| `model` | `str` | `None` | Path to Ultralytics YOLO Model File |
|
||||||
| `reg_pts` | `list of tuples` | `[(20, 400), (1260, 400)]` | Points defining the counting region polygon. Defaults to a predefined rectangle. |
|
| `region` | `list` | `[(20, 400), (1260, 400)]` | List of points defining the queue region. |
|
||||||
| `line_thickness` | `int` | `2` | Thickness of the annotation lines. |
|
| `line_width` | `int` | `2` | Line thickness for bounding boxes. |
|
||||||
| `view_img` | `bool` | `False` | Whether to display the image frames. |
|
| `show` | `bool` | `False` | Flag to control whether to display the video stream. |
|
||||||
| `draw_tracks` | `bool` | `False` | Whether to draw tracks of the objects. |
|
|
||||||
|
|
||||||
### Arguments `model.track`
|
### Arguments `model.track`
|
||||||
|
|
||||||
|
|
@ -149,23 +140,21 @@ Here's a minimal example:
|
||||||
```python
|
```python
|
||||||
import cv2
|
import cv2
|
||||||
|
|
||||||
from ultralytics import YOLO, solutions
|
from ultralytics import solutions
|
||||||
|
|
||||||
model = YOLO("yolo11n.pt")
|
|
||||||
cap = cv2.VideoCapture("path/to/video.mp4")
|
cap = cv2.VideoCapture("path/to/video.mp4")
|
||||||
queue_region = [(20, 400), (1080, 404), (1080, 360), (20, 360)]
|
queue_region = [(20, 400), (1080, 404), (1080, 360), (20, 360)]
|
||||||
|
|
||||||
queue = solutions.QueueManager(
|
queue = solutions.QueueManager(
|
||||||
names=model.names,
|
model="yolo11n.pt",
|
||||||
reg_pts=queue_region,
|
region=queue_region,
|
||||||
line_thickness=3,
|
line_width=3,
|
||||||
)
|
)
|
||||||
|
|
||||||
while cap.isOpened():
|
while cap.isOpened():
|
||||||
success, im0 = cap.read()
|
success, im0 = cap.read()
|
||||||
if success:
|
if success:
|
||||||
tracks = model.track(im0, show=False, persist=True, verbose=False)
|
out = queue.process_queue(im0)
|
||||||
out = queue.process_queue(im0, tracks)
|
|
||||||
cv2.imshow("Queue Management", im0)
|
cv2.imshow("Queue Management", im0)
|
||||||
if cv2.waitKey(1) & 0xFF == ord("q"):
|
if cv2.waitKey(1) & 0xFF == ord("q"):
|
||||||
break
|
break
|
||||||
|
|
@ -207,9 +196,9 @@ Example for airports:
|
||||||
```python
|
```python
|
||||||
queue_region_airport = [(50, 600), (1200, 600), (1200, 550), (50, 550)]
|
queue_region_airport = [(50, 600), (1200, 600), (1200, 550), (50, 550)]
|
||||||
queue_airport = solutions.QueueManager(
|
queue_airport = solutions.QueueManager(
|
||||||
names=model.names,
|
model="yolo11n.pt",
|
||||||
reg_pts=queue_region_airport,
|
region=queue_region_airport,
|
||||||
line_thickness=3,
|
line_width=3,
|
||||||
)
|
)
|
||||||
```
|
```
|
||||||
|
|
||||||
|
|
|
||||||
|
|
@ -22,7 +22,7 @@ def test_major_solutions():
|
||||||
counter = solutions.ObjectCounter(region=region_points, model="yolo11n.pt", show=False)
|
counter = solutions.ObjectCounter(region=region_points, model="yolo11n.pt", show=False)
|
||||||
heatmap = solutions.Heatmap(colormap=cv2.COLORMAP_PARULA, model="yolo11n.pt", show=False)
|
heatmap = solutions.Heatmap(colormap=cv2.COLORMAP_PARULA, model="yolo11n.pt", show=False)
|
||||||
speed = solutions.SpeedEstimator(reg_pts=region_points, names=names, view_img=False)
|
speed = solutions.SpeedEstimator(reg_pts=region_points, names=names, view_img=False)
|
||||||
queue = solutions.QueueManager(names=names, reg_pts=region_points, view_img=False)
|
queue = solutions.QueueManager(region=region_points, model="yolo11n.pt", show=False)
|
||||||
while cap.isOpened():
|
while cap.isOpened():
|
||||||
success, im0 = cap.read()
|
success, im0 = cap.read()
|
||||||
if not success:
|
if not success:
|
||||||
|
|
@ -32,7 +32,7 @@ def test_major_solutions():
|
||||||
_ = counter.count(original_im0.copy())
|
_ = counter.count(original_im0.copy())
|
||||||
_ = heatmap.generate_heatmap(original_im0.copy())
|
_ = heatmap.generate_heatmap(original_im0.copy())
|
||||||
_ = speed.estimate_speed(original_im0.copy(), tracks)
|
_ = speed.estimate_speed(original_im0.copy(), tracks)
|
||||||
_ = queue.process_queue(original_im0.copy(), tracks)
|
_ = queue.process_queue(original_im0.copy())
|
||||||
cap.release()
|
cap.release()
|
||||||
cv2.destroyAllWindows()
|
cv2.destroyAllWindows()
|
||||||
|
|
||||||
|
|
|
||||||
|
|
@ -116,7 +116,7 @@ class ObjectCounter(BaseSolution):
|
||||||
self.store_tracking_history(track_id, box) # Store track history
|
self.store_tracking_history(track_id, box) # Store track history
|
||||||
self.store_classwise_counts(cls) # store classwise counts in dict
|
self.store_classwise_counts(cls) # store classwise counts in dict
|
||||||
|
|
||||||
# Draw centroid of objects
|
# Draw tracks of objects
|
||||||
self.annotator.draw_centroid_and_tracks(
|
self.annotator.draw_centroid_and_tracks(
|
||||||
self.track_line, color=colors(int(track_id), True), track_thickness=self.line_width
|
self.track_line, color=colors(int(track_id), True), track_thickness=self.line_width
|
||||||
)
|
)
|
||||||
|
|
|
||||||
|
|
@ -1,127 +1,64 @@
|
||||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||||
|
|
||||||
from collections import defaultdict
|
from shapely.geometry import Point
|
||||||
|
|
||||||
import cv2
|
from ultralytics.solutions.solutions import BaseSolution # Import a parent class
|
||||||
|
|
||||||
from ultralytics.utils.checks import check_imshow, check_requirements
|
|
||||||
from ultralytics.utils.plotting import Annotator, colors
|
from ultralytics.utils.plotting import Annotator, colors
|
||||||
|
|
||||||
check_requirements("shapely>=2.0.0")
|
|
||||||
|
|
||||||
from shapely.geometry import Point, Polygon
|
class QueueManager(BaseSolution):
|
||||||
|
|
||||||
|
|
||||||
class QueueManager:
|
|
||||||
"""A class to manage the queue in a real-time video stream based on object tracks."""
|
"""A class to manage the queue in a real-time video stream based on object tracks."""
|
||||||
|
|
||||||
def __init__(
|
def __init__(self, **kwargs):
|
||||||
self,
|
"""Initializes the QueueManager with specified parameters for tracking and counting objects."""
|
||||||
names,
|
super().__init__(**kwargs)
|
||||||
reg_pts=None,
|
self.initialize_region()
|
||||||
line_thickness=2,
|
self.counts = 0 # Queue counts Information
|
||||||
view_img=False,
|
self.rect_color = (255, 255, 255) # Rectangle color
|
||||||
draw_tracks=False,
|
self.region_length = len(self.region) # Store region length for further usage
|
||||||
):
|
|
||||||
"""
|
|
||||||
Initializes the QueueManager with specified parameters for tracking and counting objects.
|
|
||||||
|
|
||||||
Args:
|
def process_queue(self, im0):
|
||||||
names (dict): A dictionary mapping class IDs to class names.
|
|
||||||
reg_pts (list of tuples, optional): Points defining the counting region polygon. Defaults to a predefined
|
|
||||||
rectangle.
|
|
||||||
line_thickness (int, optional): Thickness of the annotation lines. Defaults to 2.
|
|
||||||
view_img (bool, optional): Whether to display the image frames. Defaults to False.
|
|
||||||
draw_tracks (bool, optional): Whether to draw tracks of the objects. Defaults to False.
|
|
||||||
"""
|
|
||||||
# Region & Line Information
|
|
||||||
self.reg_pts = reg_pts if reg_pts is not None else [(20, 60), (20, 680), (1120, 680), (1120, 60)]
|
|
||||||
self.counting_region = (
|
|
||||||
Polygon(self.reg_pts) if len(self.reg_pts) >= 3 else Polygon([(20, 60), (20, 680), (1120, 680), (1120, 60)])
|
|
||||||
)
|
|
||||||
|
|
||||||
# annotation Information
|
|
||||||
self.tf = line_thickness
|
|
||||||
self.view_img = view_img
|
|
||||||
|
|
||||||
self.names = names # Class names
|
|
||||||
|
|
||||||
# Object counting Information
|
|
||||||
self.counts = 0
|
|
||||||
|
|
||||||
# Tracks info
|
|
||||||
self.track_history = defaultdict(list)
|
|
||||||
self.draw_tracks = draw_tracks
|
|
||||||
|
|
||||||
# Check if environment supports imshow
|
|
||||||
self.env_check = check_imshow(warn=True)
|
|
||||||
|
|
||||||
def extract_and_process_tracks(self, tracks, im0):
|
|
||||||
"""Extracts and processes tracks for queue management in a video stream."""
|
|
||||||
# Initialize annotator and draw the queue region
|
|
||||||
annotator = Annotator(im0, self.tf, self.names)
|
|
||||||
self.counts = 0 # Reset counts every frame
|
|
||||||
if tracks[0].boxes.id is not None:
|
|
||||||
boxes = tracks[0].boxes.xyxy.cpu()
|
|
||||||
clss = tracks[0].boxes.cls.cpu().tolist()
|
|
||||||
track_ids = tracks[0].boxes.id.int().cpu().tolist()
|
|
||||||
|
|
||||||
# Extract tracks
|
|
||||||
for box, track_id, cls in zip(boxes, track_ids, clss):
|
|
||||||
# Draw bounding box
|
|
||||||
annotator.box_label(box, label=self.names[cls], color=colors(int(track_id), True))
|
|
||||||
|
|
||||||
# Update track history
|
|
||||||
track_line = self.track_history[track_id]
|
|
||||||
track_line.append((float((box[0] + box[2]) / 2), float((box[1] + box[3]) / 2)))
|
|
||||||
if len(track_line) > 30:
|
|
||||||
track_line.pop(0)
|
|
||||||
|
|
||||||
# Draw track trails if enabled
|
|
||||||
if self.draw_tracks:
|
|
||||||
annotator.draw_centroid_and_tracks(
|
|
||||||
track_line,
|
|
||||||
color=colors(int(track_id), True),
|
|
||||||
track_thickness=self.line_thickness,
|
|
||||||
)
|
|
||||||
|
|
||||||
prev_position = self.track_history[track_id][-2] if len(self.track_history[track_id]) > 1 else None
|
|
||||||
|
|
||||||
# Check if the object is inside the counting region
|
|
||||||
if len(self.reg_pts) >= 3:
|
|
||||||
is_inside = self.counting_region.contains(Point(track_line[-1]))
|
|
||||||
if prev_position is not None and is_inside:
|
|
||||||
self.counts += 1
|
|
||||||
|
|
||||||
# Display queue counts
|
|
||||||
label = f"Queue Counts : {str(self.counts)}"
|
|
||||||
if label is not None:
|
|
||||||
annotator.queue_counts_display(
|
|
||||||
label,
|
|
||||||
points=self.reg_pts,
|
|
||||||
region_color=(255, 0, 255),
|
|
||||||
txt_color=(104, 31, 17),
|
|
||||||
)
|
|
||||||
|
|
||||||
if self.env_check and self.view_img:
|
|
||||||
annotator.draw_region(reg_pts=self.reg_pts, thickness=self.tf * 2, color=(255, 0, 255))
|
|
||||||
cv2.imshow("Ultralytics YOLOv8 Queue Manager", im0)
|
|
||||||
# Close window on 'q' key press
|
|
||||||
if cv2.waitKey(1) & 0xFF == ord("q"):
|
|
||||||
return
|
|
||||||
|
|
||||||
def process_queue(self, im0, tracks):
|
|
||||||
"""
|
"""
|
||||||
Main function to start the queue management process.
|
Main function to start the queue management process.
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
im0 (ndarray): Current frame from the video stream.
|
im0 (ndarray): The input image that will be used for processing
|
||||||
tracks (list): List of tracks obtained from the object tracking process.
|
Returns
|
||||||
|
im0 (ndarray): The processed image for more usage
|
||||||
"""
|
"""
|
||||||
self.extract_and_process_tracks(tracks, im0) # Extract and process tracks
|
self.counts = 0 # Reset counts every frame
|
||||||
return im0
|
self.annotator = Annotator(im0, line_width=self.line_width) # Initialize annotator
|
||||||
|
self.extract_tracks(im0) # Extract tracks
|
||||||
|
|
||||||
|
self.annotator.draw_region(
|
||||||
|
reg_pts=self.region, color=self.rect_color, thickness=self.line_width * 2
|
||||||
|
) # Draw region
|
||||||
|
|
||||||
if __name__ == "__main__":
|
for box, track_id, cls in zip(self.boxes, self.track_ids, self.clss):
|
||||||
classes_names = {0: "person", 1: "car"} # example class names
|
# Draw bounding box and counting region
|
||||||
queue_manager = QueueManager(classes_names)
|
self.annotator.box_label(box, label=self.names[cls], color=colors(track_id, True))
|
||||||
|
self.store_tracking_history(track_id, box) # Store track history
|
||||||
|
|
||||||
|
# Draw tracks of objects
|
||||||
|
self.annotator.draw_centroid_and_tracks(
|
||||||
|
self.track_line, color=colors(int(track_id), True), track_thickness=self.line_width
|
||||||
|
)
|
||||||
|
|
||||||
|
# Cache frequently accessed attributes
|
||||||
|
track_history = self.track_history.get(track_id, [])
|
||||||
|
|
||||||
|
# store previous position of track and check if the object is inside the counting region
|
||||||
|
prev_position = track_history[-2] if len(track_history) > 1 else None
|
||||||
|
if self.region_length >= 3 and prev_position and self.r_s.contains(Point(self.track_line[-1])):
|
||||||
|
self.counts += 1
|
||||||
|
|
||||||
|
# Display queue counts
|
||||||
|
self.annotator.queue_counts_display(
|
||||||
|
f"Queue Counts : {str(self.counts)}",
|
||||||
|
points=self.region,
|
||||||
|
region_color=self.rect_color,
|
||||||
|
txt_color=(104, 31, 17),
|
||||||
|
)
|
||||||
|
self.display_output(im0) # display output with base class function
|
||||||
|
|
||||||
|
return im0 # return output image for more usage
|
||||||
|
|
|
||||||
|
|
@ -76,9 +76,11 @@ class BaseSolution:
|
||||||
|
|
||||||
def initialize_region(self):
|
def initialize_region(self):
|
||||||
"""Initialize the counting region and line segment based on config."""
|
"""Initialize the counting region and line segment based on config."""
|
||||||
self.region = [(20, 400), (1260, 400)] if self.region is None else self.region
|
self.region = [(20, 400), (1080, 404), (1080, 360), (20, 360)] if self.region is None else self.region
|
||||||
self.r_s = Polygon(self.region) if len(self.region) >= 3 else LineString(self.region)
|
self.r_s = Polygon(self.region) if len(self.region) >= 3 else LineString(self.region) # region segment
|
||||||
self.l_s = LineString([(self.region[0][0], self.region[0][1]), (self.region[1][0], self.region[1][1])])
|
self.l_s = LineString(
|
||||||
|
[(self.region[0][0], self.region[0][1]), (self.region[1][0], self.region[1][1])]
|
||||||
|
) # line segment
|
||||||
|
|
||||||
def display_output(self, im0):
|
def display_output(self, im0):
|
||||||
"""
|
"""
|
||||||
|
|
|
||||||
Loading…
Add table
Add a link
Reference in a new issue