ultralytics 8.0.136 refactor and simplify package (#3748)
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>
This commit is contained in:
parent
8ebe94d1e9
commit
620f3eb218
383 changed files with 4213 additions and 4646 deletions
63
ultralytics/models/yolo/segment/predict.py
Normal file
63
ultralytics/models/yolo/segment/predict.py
Normal file
|
|
@ -0,0 +1,63 @@
|
|||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
|
||||
import torch
|
||||
|
||||
from ultralytics.engine.results import Results
|
||||
from ultralytics.models.yolo.detect.predict import DetectionPredictor
|
||||
from ultralytics.utils import DEFAULT_CFG, ROOT, ops
|
||||
|
||||
|
||||
class SegmentationPredictor(DetectionPredictor):
|
||||
|
||||
def __init__(self, cfg=DEFAULT_CFG, overrides=None, _callbacks=None):
|
||||
super().__init__(cfg, overrides, _callbacks)
|
||||
self.args.task = 'segment'
|
||||
|
||||
def postprocess(self, preds, img, orig_imgs):
|
||||
"""TODO: filter by classes."""
|
||||
p = ops.non_max_suppression(preds[0],
|
||||
self.args.conf,
|
||||
self.args.iou,
|
||||
agnostic=self.args.agnostic_nms,
|
||||
max_det=self.args.max_det,
|
||||
nc=len(self.model.names),
|
||||
classes=self.args.classes)
|
||||
results = []
|
||||
proto = preds[1][-1] if len(preds[1]) == 3 else preds[1] # second output is len 3 if pt, but only 1 if exported
|
||||
for i, pred in enumerate(p):
|
||||
orig_img = orig_imgs[i] if isinstance(orig_imgs, list) else orig_imgs
|
||||
path = self.batch[0]
|
||||
img_path = path[i] if isinstance(path, list) else path
|
||||
if not len(pred): # save empty boxes
|
||||
results.append(Results(orig_img=orig_img, path=img_path, names=self.model.names, boxes=pred[:, :6]))
|
||||
continue
|
||||
if self.args.retina_masks:
|
||||
if not isinstance(orig_imgs, torch.Tensor):
|
||||
pred[:, :4] = ops.scale_boxes(img.shape[2:], pred[:, :4], orig_img.shape)
|
||||
masks = ops.process_mask_native(proto[i], pred[:, 6:], pred[:, :4], orig_img.shape[:2]) # HWC
|
||||
else:
|
||||
masks = ops.process_mask(proto[i], pred[:, 6:], pred[:, :4], img.shape[2:], upsample=True) # HWC
|
||||
if not isinstance(orig_imgs, torch.Tensor):
|
||||
pred[:, :4] = ops.scale_boxes(img.shape[2:], pred[:, :4], orig_img.shape)
|
||||
results.append(
|
||||
Results(orig_img=orig_img, path=img_path, names=self.model.names, boxes=pred[:, :6], masks=masks))
|
||||
return results
|
||||
|
||||
|
||||
def predict(cfg=DEFAULT_CFG, use_python=False):
|
||||
"""Runs YOLO object detection on an image or video source."""
|
||||
model = cfg.model or 'yolov8n-seg.pt'
|
||||
source = cfg.source if cfg.source is not None else ROOT / 'assets' if (ROOT / 'assets').exists() \
|
||||
else 'https://ultralytics.com/images/bus.jpg'
|
||||
|
||||
args = dict(model=model, source=source)
|
||||
if use_python:
|
||||
from ultralytics import YOLO
|
||||
YOLO(model)(**args)
|
||||
else:
|
||||
predictor = SegmentationPredictor(overrides=args)
|
||||
predictor.predict_cli()
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
predict()
|
||||
Loading…
Add table
Add a link
Reference in a new issue