ultralytics 8.0.136 refactor and simplify package (#3748)
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>
This commit is contained in:
parent
8ebe94d1e9
commit
620f3eb218
383 changed files with 4213 additions and 4646 deletions
|
|
@ -104,7 +104,7 @@ If you have your own dataset and would like to use it for training segmentation
|
|||
You can easily convert labels from the popular COCO dataset format to the YOLO format using the following code snippet:
|
||||
|
||||
```python
|
||||
from ultralytics.yolo.data.converter import convert_coco
|
||||
from ultralytics.data.converter import convert_coco
|
||||
|
||||
convert_coco(labels_dir='../coco/annotations/', use_segments=True)
|
||||
```
|
||||
|
|
@ -122,7 +122,7 @@ Auto-annotation is an essential feature that allows you to generate a segmentati
|
|||
To auto-annotate your dataset using the Ultralytics framework, you can use the `auto_annotate` function as shown below:
|
||||
|
||||
```python
|
||||
from ultralytics.yolo.data.annotator import auto_annotate
|
||||
from ultralytics.data.annotator import auto_annotate
|
||||
|
||||
auto_annotate(data="path/to/images", det_model="yolov8x.pt", sam_model='sam_b.pt')
|
||||
```
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue