Improve Docs dataset layout issues (#15696)
Co-authored-by: Francesco Mattioli <Francesco.mttl@gmail.com> Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>
This commit is contained in:
parent
90be5f7266
commit
62094bd03f
6 changed files with 83 additions and 57 deletions
|
|
@ -135,19 +135,23 @@ Ultralytics YOLO offers advanced real-time object detection, segmentation, and c
|
|||
|
||||
If you incorporate the Crack Segmentation Dataset into your research, please use the following BibTeX reference:
|
||||
|
||||
```bibtex
|
||||
@misc{ crack-bphdr_dataset,
|
||||
title = { crack Dataset },
|
||||
type = { Open Source Dataset },
|
||||
author = { University },
|
||||
howpublished = { \url{ https://universe.roboflow.com/university-bswxt/crack-bphdr } },
|
||||
url = { https://universe.roboflow.com/university-bswxt/crack-bphdr },
|
||||
journal = { Roboflow Universe },
|
||||
publisher = { Roboflow },
|
||||
year = { 2022 },
|
||||
month = { dec },
|
||||
note = { visited on 2024-01-23 },
|
||||
}
|
||||
```
|
||||
!!! Quote ""
|
||||
|
||||
=== "BibTeX"
|
||||
|
||||
```bibtex
|
||||
@misc{ crack-bphdr_dataset,
|
||||
title = { crack Dataset },
|
||||
type = { Open Source Dataset },
|
||||
author = { University },
|
||||
howpublished = { \url{ https://universe.roboflow.com/university-bswxt/crack-bphdr } },
|
||||
url = { https://universe.roboflow.com/university-bswxt/crack-bphdr },
|
||||
journal = { Roboflow Universe },
|
||||
publisher = { Roboflow },
|
||||
year = { 2022 },
|
||||
month = { dec },
|
||||
note = { visited on 2024-01-23 },
|
||||
}
|
||||
```
|
||||
|
||||
This citation format ensures proper accreditation to the creators of the dataset and acknowledges its use in your research.
|
||||
|
|
|
|||
|
|
@ -99,24 +99,28 @@ The [Roboflow Package Segmentation Dataset](https://universe.roboflow.com/factor
|
|||
|
||||
### How do I train an Ultralytics YOLOv8 model on the Package Segmentation Dataset?
|
||||
|
||||
You can train an Ultralytics YOLOv8n model using both Python and CLI methods. For Python, use the snippet below:
|
||||
You can train an Ultralytics YOLOv8n model using both Python and CLI methods. Use the snippets below:
|
||||
|
||||
```python
|
||||
from ultralytics import YOLO
|
||||
!!! Example "Train Example"
|
||||
|
||||
# Load a model
|
||||
model = YOLO("yolov8n-seg.pt") # load a pretrained model
|
||||
=== "Python"
|
||||
|
||||
```python
|
||||
from ultralytics import YOLO
|
||||
|
||||
# Train the model
|
||||
results = model.train(data="package-seg.yaml", epochs=100, imgsz=640)
|
||||
```
|
||||
# Load a model
|
||||
model = YOLO("yolov8n-seg.pt") # load a pretrained model
|
||||
|
||||
For CLI:
|
||||
# Train the model
|
||||
results = model.train(data="package-seg.yaml", epochs=100, imgsz=640)
|
||||
```
|
||||
|
||||
```bash
|
||||
# Start training from a pretrained *.pt model
|
||||
yolo segment train data=package-seg.yaml model=yolov8n-seg.pt epochs=100 imgsz=640
|
||||
```
|
||||
=== "CLI"
|
||||
|
||||
```bash
|
||||
# Start training from a pretrained *.pt model
|
||||
yolo segment train data=package-seg.yaml model=yolov8n-seg.pt epochs=100 imgsz=640
|
||||
```
|
||||
|
||||
Refer to the model [Training](../../modes/train.md) page for more details.
|
||||
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue