Add speed_estimation and distance_calculation in ultralytics solutions (#7325)
Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>
This commit is contained in:
parent
2f9ec8c0b4
commit
61fa12460d
12 changed files with 642 additions and 23 deletions
187
ultralytics/solutions/distance_calculation.py
Normal file
187
ultralytics/solutions/distance_calculation.py
Normal file
|
|
@ -0,0 +1,187 @@
|
|||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
|
||||
import math
|
||||
|
||||
import cv2
|
||||
|
||||
from ultralytics.utils.plotting import Annotator, colors
|
||||
|
||||
|
||||
class DistanceCalculation:
|
||||
"""A class to calculate distance between two objects in real-time video stream based on their tracks."""
|
||||
|
||||
def __init__(self):
|
||||
"""Initializes the distance calculation class with default values for Visual, Image, track and distance
|
||||
parameters.
|
||||
"""
|
||||
|
||||
# Visual & im0 information
|
||||
self.im0 = None
|
||||
self.annotator = None
|
||||
self.view_img = False
|
||||
self.line_color = (255, 255, 0)
|
||||
self.centroid_color = (255, 0, 255)
|
||||
|
||||
# Predict/track information
|
||||
self.clss = None
|
||||
self.names = None
|
||||
self.boxes = None
|
||||
self.line_thickness = 2
|
||||
self.trk_ids = None
|
||||
|
||||
# Distance calculation information
|
||||
self.centroids = []
|
||||
self.pixel_per_meter = 10
|
||||
|
||||
# Mouse event
|
||||
self.left_mouse_count = 0
|
||||
self.selected_boxes = {}
|
||||
|
||||
def set_args(self,
|
||||
names,
|
||||
pixels_per_meter=10,
|
||||
view_img=False,
|
||||
line_thickness=2,
|
||||
line_color=(255, 255, 0),
|
||||
centroid_color=(255, 0, 255)):
|
||||
"""
|
||||
Configures the distance calculation and display parameters.
|
||||
|
||||
Args:
|
||||
names (dict): object detection classes names
|
||||
pixels_per_meter (int): Number of pixels in meter
|
||||
view_img (bool): Flag indicating frame display
|
||||
line_thickness (int): Line thickness for bounding boxes.
|
||||
line_color (RGB): color of centroids line
|
||||
centroid_color (RGB): colors of bbox centroids
|
||||
"""
|
||||
self.names = names
|
||||
self.pixel_per_meter = pixels_per_meter
|
||||
self.view_img = view_img
|
||||
self.line_thickness = line_thickness
|
||||
self.line_color = line_color
|
||||
self.centroid_color = centroid_color
|
||||
|
||||
def mouse_event_for_distance(self, event, x, y, flags, param):
|
||||
"""
|
||||
This function is designed to move region with mouse events in a real-time video stream.
|
||||
|
||||
Args:
|
||||
event (int): The type of mouse event (e.g., cv2.EVENT_MOUSEMOVE, cv2.EVENT_LBUTTONDOWN, etc.).
|
||||
x (int): The x-coordinate of the mouse pointer.
|
||||
y (int): The y-coordinate of the mouse pointer.
|
||||
flags (int): Any flags associated with the event (e.g., cv2.EVENT_FLAG_CTRLKEY,
|
||||
cv2.EVENT_FLAG_SHIFTKEY, etc.).
|
||||
param (dict): Additional parameters you may want to pass to the function.
|
||||
"""
|
||||
global selected_boxes
|
||||
global left_mouse_count
|
||||
if event == cv2.EVENT_LBUTTONDOWN:
|
||||
self.left_mouse_count += 1
|
||||
if self.left_mouse_count <= 2:
|
||||
for box, track_id in zip(self.boxes, self.trk_ids):
|
||||
if box[0] < x < box[2] and box[1] < y < box[3]:
|
||||
if track_id not in self.selected_boxes:
|
||||
self.selected_boxes[track_id] = []
|
||||
self.selected_boxes[track_id] = box
|
||||
|
||||
if event == cv2.EVENT_RBUTTONDOWN:
|
||||
self.selected_boxes = {}
|
||||
self.left_mouse_count = 0
|
||||
|
||||
def extract_tracks(self, tracks):
|
||||
"""
|
||||
Extracts results from the provided data.
|
||||
|
||||
Args:
|
||||
tracks (list): List of tracks obtained from the object tracking process.
|
||||
"""
|
||||
self.boxes = tracks[0].boxes.xyxy.cpu()
|
||||
self.clss = tracks[0].boxes.cls.cpu().tolist()
|
||||
self.trk_ids = tracks[0].boxes.id.int().cpu().tolist()
|
||||
|
||||
def calculate_centroid(self, box):
|
||||
"""
|
||||
Calculate the centroid of bounding box
|
||||
Args:
|
||||
box (list): Bounding box data
|
||||
"""
|
||||
return int((box[0] + box[2]) // 2), int((box[1] + box[3]) // 2)
|
||||
|
||||
def calculate_distance(self, centroid1, centroid2):
|
||||
"""
|
||||
Calculate distance between two centroids
|
||||
Args:
|
||||
centroid1 (point): First bounding box data
|
||||
centroid2 (point): Second bounding box data
|
||||
"""
|
||||
pixel_distance = math.sqrt((centroid1[0] - centroid2[0]) ** 2 + (centroid1[1] - centroid2[1]) ** 2)
|
||||
return pixel_distance / self.pixel_per_meter
|
||||
|
||||
def plot_distance_and_line(self, distance):
|
||||
"""
|
||||
Plot the distance and line on frame
|
||||
Args:
|
||||
distance (float): Distance between two centroids
|
||||
"""
|
||||
cv2.rectangle(self.im0, (15, 25), (280, 70), (255, 255, 255), -1)
|
||||
cv2.putText(self.im0, f'Distance : {distance:.2f}m', (20, 55), cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0, 0, 0), 2,
|
||||
cv2.LINE_AA)
|
||||
cv2.line(self.im0, self.centroids[0], self.centroids[1], self.line_color, 3)
|
||||
cv2.circle(self.im0, self.centroids[0], 6, self.centroid_color, -1)
|
||||
cv2.circle(self.im0, self.centroids[1], 6, self.centroid_color, -1)
|
||||
|
||||
def start_process(self, im0, tracks):
|
||||
"""
|
||||
Calculate distance between two bounding boxes based on tracking data
|
||||
Args:
|
||||
im0 (nd array): Image
|
||||
tracks (list): List of tracks obtained from the object tracking process.
|
||||
"""
|
||||
self.im0 = im0
|
||||
if tracks[0].boxes.id is None:
|
||||
if self.view_img:
|
||||
self.display_frames()
|
||||
return
|
||||
else:
|
||||
return
|
||||
|
||||
self.extract_tracks(tracks)
|
||||
|
||||
self.annotator = Annotator(self.im0, line_width=2)
|
||||
|
||||
for box, cls, track_id in zip(self.boxes, self.clss, self.trk_ids):
|
||||
self.annotator.box_label(box, color=colors(int(cls), True), label=self.names[int(cls)])
|
||||
|
||||
if len(self.selected_boxes) == 2:
|
||||
for trk_id, _ in self.selected_boxes.items():
|
||||
if trk_id == track_id:
|
||||
self.selected_boxes[track_id] = box
|
||||
|
||||
if len(self.selected_boxes) == 2:
|
||||
for trk_id, box in self.selected_boxes.items():
|
||||
centroid = self.calculate_centroid(self.selected_boxes[trk_id])
|
||||
self.centroids.append(centroid)
|
||||
|
||||
distance = self.calculate_distance(self.centroids[0], self.centroids[1])
|
||||
self.plot_distance_and_line(distance)
|
||||
|
||||
self.centroids = []
|
||||
|
||||
if self.view_img:
|
||||
self.display_frames()
|
||||
|
||||
return im0
|
||||
|
||||
def display_frames(self):
|
||||
"""Display frame."""
|
||||
cv2.namedWindow('Ultralytics Distance Estimation')
|
||||
cv2.setMouseCallback('Ultralytics Distance Estimation', self.mouse_event_for_distance)
|
||||
cv2.imshow('Ultralytics Distance Estimation', self.im0)
|
||||
|
||||
if cv2.waitKey(1) & 0xFF == ord('q'):
|
||||
return
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
DistanceCalculation()
|
||||
|
|
@ -158,7 +158,11 @@ class Heatmap:
|
|||
"""
|
||||
self.im0 = im0
|
||||
if tracks[0].boxes.id is None:
|
||||
return self.im0
|
||||
if self.view_img and self.env_check:
|
||||
self.display_frames()
|
||||
return
|
||||
else:
|
||||
return
|
||||
|
||||
self.heatmap *= self.decay_factor # decay factor
|
||||
self.extract_results(tracks)
|
||||
|
|
@ -240,22 +244,16 @@ class Heatmap:
|
|||
txt_color=self.count_txt_color,
|
||||
color=self.count_color)
|
||||
|
||||
im0_with_heatmap = cv2.addWeighted(self.im0, 1 - self.heatmap_alpha, heatmap_colored, self.heatmap_alpha, 0)
|
||||
self.im0 = cv2.addWeighted(self.im0, 1 - self.heatmap_alpha, heatmap_colored, self.heatmap_alpha, 0)
|
||||
|
||||
if self.env_check and self.view_img:
|
||||
self.display_frames(im0_with_heatmap)
|
||||
self.display_frames()
|
||||
|
||||
return im0_with_heatmap
|
||||
return self.im0
|
||||
|
||||
@staticmethod
|
||||
def display_frames(im0_with_heatmap):
|
||||
"""
|
||||
Display heatmap.
|
||||
|
||||
Args:
|
||||
im0_with_heatmap (nd array): Original Image with heatmap
|
||||
"""
|
||||
cv2.imshow('Ultralytics Heatmap', im0_with_heatmap)
|
||||
def display_frames(self):
|
||||
"""Display frame."""
|
||||
cv2.imshow('Ultralytics Heatmap', self.im0)
|
||||
|
||||
if cv2.waitKey(1) & 0xFF == ord('q'):
|
||||
return
|
||||
|
|
|
|||
|
|
@ -198,7 +198,9 @@ class ObjectCounter:
|
|||
txt_color=self.count_txt_color,
|
||||
color=self.count_color)
|
||||
|
||||
if self.env_check and self.view_img:
|
||||
def display_frames(self):
|
||||
"""Display frame."""
|
||||
if self.env_check:
|
||||
cv2.namedWindow('Ultralytics YOLOv8 Object Counter')
|
||||
if len(self.reg_pts) == 4: # only add mouse event If user drawn region
|
||||
cv2.setMouseCallback('Ultralytics YOLOv8 Object Counter', self.mouse_event_for_region,
|
||||
|
|
@ -219,8 +221,15 @@ class ObjectCounter:
|
|||
self.im0 = im0 # store image
|
||||
|
||||
if tracks[0].boxes.id is None:
|
||||
return
|
||||
if self.view_img:
|
||||
self.display_frames()
|
||||
return
|
||||
else:
|
||||
return
|
||||
self.extract_and_process_tracks(tracks)
|
||||
|
||||
if self.view_img:
|
||||
self.display_frames()
|
||||
return self.im0
|
||||
|
||||
|
||||
|
|
|
|||
203
ultralytics/solutions/speed_estimation.py
Normal file
203
ultralytics/solutions/speed_estimation.py
Normal file
|
|
@ -0,0 +1,203 @@
|
|||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
|
||||
from collections import defaultdict
|
||||
from time import time
|
||||
|
||||
import cv2
|
||||
import numpy as np
|
||||
|
||||
from ultralytics.utils.checks import check_imshow
|
||||
from ultralytics.utils.plotting import Annotator, colors
|
||||
|
||||
|
||||
class SpeedEstimator:
|
||||
"""A class to estimation speed of objects in real-time video stream based on their tracks."""
|
||||
|
||||
def __init__(self):
|
||||
"""Initializes the speed-estimator class with default values for Visual, Image, track and speed parameters."""
|
||||
|
||||
# Visual & im0 information
|
||||
self.im0 = None
|
||||
self.annotator = None
|
||||
self.view_img = False
|
||||
|
||||
# Region information
|
||||
self.reg_pts = [(20, 400), (1260, 400)]
|
||||
self.region_thickness = 3
|
||||
|
||||
# Predict/track information
|
||||
self.clss = None
|
||||
self.names = None
|
||||
self.boxes = None
|
||||
self.trk_ids = None
|
||||
self.trk_pts = None
|
||||
self.line_thickness = 2
|
||||
self.trk_history = defaultdict(list)
|
||||
|
||||
# Speed estimator information
|
||||
self.current_time = 0
|
||||
self.dist_data = {}
|
||||
self.trk_idslist = []
|
||||
self.spdl_dist_thresh = 10
|
||||
self.trk_previous_times = {}
|
||||
self.trk_previous_points = {}
|
||||
|
||||
# Check if environment support imshow
|
||||
self.env_check = check_imshow(warn=True)
|
||||
|
||||
def set_args(
|
||||
self,
|
||||
reg_pts,
|
||||
names,
|
||||
view_img=False,
|
||||
line_thickness=2,
|
||||
region_thickness=5,
|
||||
spdl_dist_thresh=10,
|
||||
):
|
||||
"""
|
||||
Configures the speed estimation and display parameters.
|
||||
|
||||
Args:
|
||||
reg_pts (list): Initial list of points defining the speed calculation region.
|
||||
names (dict): object detection classes names
|
||||
view_img (bool): Flag indicating frame display
|
||||
line_thickness (int): Line thickness for bounding boxes.
|
||||
region_thickness (int): Speed estimation region thickness
|
||||
spdl_dist_thresh (int): Euclidean distance threshold for speed line
|
||||
"""
|
||||
if reg_pts is None:
|
||||
print('Region points not provided, using default values')
|
||||
else:
|
||||
self.reg_pts = reg_pts
|
||||
self.names = names
|
||||
self.view_img = view_img
|
||||
self.line_thickness = line_thickness
|
||||
self.region_thickness = region_thickness
|
||||
self.spdl_dist_thresh = spdl_dist_thresh
|
||||
|
||||
def extract_tracks(self, tracks):
|
||||
"""
|
||||
Extracts results from the provided data.
|
||||
|
||||
Args:
|
||||
tracks (list): List of tracks obtained from the object tracking process.
|
||||
"""
|
||||
self.boxes = tracks[0].boxes.xyxy.cpu()
|
||||
self.clss = tracks[0].boxes.cls.cpu().tolist()
|
||||
self.trk_ids = tracks[0].boxes.id.int().cpu().tolist()
|
||||
|
||||
def store_track_info(self, track_id, box):
|
||||
"""
|
||||
Store track data.
|
||||
|
||||
Args:
|
||||
track_id (int): object track id.
|
||||
box (list): object bounding box data
|
||||
"""
|
||||
track = self.trk_history[track_id]
|
||||
bbox_center = (float((box[0] + box[2]) / 2), float((box[1] + box[3]) / 2))
|
||||
track.append(bbox_center)
|
||||
|
||||
if len(track) > 30:
|
||||
track.pop(0)
|
||||
|
||||
self.trk_pts = np.hstack(track).astype(np.int32).reshape((-1, 1, 2))
|
||||
return track
|
||||
|
||||
def plot_box_and_track(self, track_id, box, cls, track):
|
||||
"""
|
||||
Plot track and bounding box.
|
||||
|
||||
Args:
|
||||
track_id (int): object track id.
|
||||
box (list): object bounding box data
|
||||
cls (str): object class name
|
||||
track (list): tracking history for tracks path drawing
|
||||
"""
|
||||
speed_label = str(int(
|
||||
self.dist_data[track_id])) + 'km/ph' if track_id in self.dist_data else self.names[int(cls)]
|
||||
bbox_color = colors(int(track_id)) if track_id in self.dist_data else (255, 0, 255)
|
||||
|
||||
self.annotator.box_label(box, speed_label, bbox_color)
|
||||
|
||||
cv2.polylines(self.im0, [self.trk_pts], isClosed=False, color=(0, 255, 0), thickness=1)
|
||||
cv2.circle(self.im0, (int(track[-1][0]), int(track[-1][1])), 5, bbox_color, -1)
|
||||
|
||||
def calculate_speed(self, trk_id, track):
|
||||
"""
|
||||
Calculation of object speed
|
||||
Args:
|
||||
trk_id (int): object track id.
|
||||
track (list): tracking history for tracks path drawing
|
||||
"""
|
||||
|
||||
if self.reg_pts[0][0] < track[-1][0] < self.reg_pts[1][0]:
|
||||
|
||||
if (self.reg_pts[1][1] - self.spdl_dist_thresh < track[-1][1] < self.reg_pts[1][1] + self.spdl_dist_thresh):
|
||||
direction = 'known'
|
||||
|
||||
elif (self.reg_pts[0][1] - self.spdl_dist_thresh < track[-1][1] <
|
||||
self.reg_pts[0][1] + self.spdl_dist_thresh):
|
||||
direction = 'known'
|
||||
|
||||
else:
|
||||
direction = 'unknown'
|
||||
|
||||
if self.trk_previous_times[trk_id] != 0 and direction != 'unknown':
|
||||
|
||||
if trk_id not in self.trk_idslist:
|
||||
self.trk_idslist.append(trk_id)
|
||||
|
||||
time_difference = time() - self.trk_previous_times[trk_id]
|
||||
if time_difference > 0:
|
||||
dist_difference = np.abs(track[-1][1] - self.trk_previous_points[trk_id][1])
|
||||
speed = dist_difference / time_difference
|
||||
self.dist_data[trk_id] = speed
|
||||
|
||||
self.trk_previous_times[trk_id] = time()
|
||||
self.trk_previous_points[trk_id] = track[-1]
|
||||
|
||||
def estimate_speed(self, im0, tracks):
|
||||
"""
|
||||
Calculate object based on tracking data
|
||||
Args:
|
||||
im0 (nd array): Image
|
||||
tracks (list): List of tracks obtained from the object tracking process.
|
||||
"""
|
||||
self.im0 = im0
|
||||
if tracks[0].boxes.id is None:
|
||||
if self.view_img and self.env_check:
|
||||
self.display_frames()
|
||||
return
|
||||
else:
|
||||
return
|
||||
|
||||
self.extract_tracks(tracks)
|
||||
|
||||
self.annotator = Annotator(self.im0, line_width=2)
|
||||
self.annotator.draw_region(reg_pts=self.reg_pts, color=(255, 0, 0), thickness=self.region_thickness)
|
||||
|
||||
for box, trk_id, cls in zip(self.boxes, self.trk_ids, self.clss):
|
||||
|
||||
track = self.store_track_info(trk_id, box)
|
||||
|
||||
if trk_id not in self.trk_previous_times:
|
||||
self.trk_previous_times[trk_id] = 0
|
||||
|
||||
self.plot_box_and_track(trk_id, box, cls, track)
|
||||
self.calculate_speed(trk_id, track)
|
||||
|
||||
if self.view_img and self.env_check:
|
||||
self.display_frames()
|
||||
|
||||
return im0
|
||||
|
||||
def display_frames(self):
|
||||
"""Display frame."""
|
||||
cv2.imshow('Ultralytics Speed Estimation', self.im0)
|
||||
if cv2.waitKey(1) & 0xFF == ord('q'):
|
||||
return
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
SpeedEstimator()
|
||||
Loading…
Add table
Add a link
Reference in a new issue