Add speed_estimation and distance_calculation in ultralytics solutions (#7325)
Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>
This commit is contained in:
parent
2f9ec8c0b4
commit
61fa12460d
12 changed files with 642 additions and 23 deletions
98
docs/en/guides/speed-estimation.md
Normal file
98
docs/en/guides/speed-estimation.md
Normal file
|
|
@ -0,0 +1,98 @@
|
|||
---
|
||||
comments: true
|
||||
description: Speed Estimation Using Ultralytics YOLOv8
|
||||
keywords: Ultralytics, YOLOv8, Object Detection, Speed Estimation, Object Tracking, Notebook, IPython Kernel, CLI, Python SDK
|
||||
---
|
||||
|
||||
# Speed Estimation using Ultralytics YOLOv8 🚀
|
||||
|
||||
## What is Speed Estimation?
|
||||
|
||||
Speed estimation is the process of calculating the rate of movement of an object within a given context, often employed in computer vision applications. Using [Ultralytics YOLOv8](https://github.com/ultralytics/ultralytics/) you can now calculate the speed of object using [object tracking](https://docs.ultralytics.com/modes/track/) alongside distance and time data, crucial for tasks like traffic and surveillance. The accuracy of speed estimation directly influences the efficiency and reliability of various applications, making it a key component in the advancement of intelligent systems and real-time decision-making processes.
|
||||
|
||||
## Advantages of Speed Estimation?
|
||||
|
||||
- **Efficient Traffic Control:** Accurate speed estimation aids in managing traffic flow, enhancing safety, and reducing congestion on roadways.
|
||||
- **Precise Autonomous Navigation:** In autonomous systems like self-driving cars, reliable speed estimation ensures safe and accurate vehicle navigation.
|
||||
- **Enhanced Surveillance Security:** Speed estimation in surveillance analytics helps identify unusual behaviors or potential threats, improving the effectiveness of security measures.
|
||||
|
||||
## Real World Applications
|
||||
|
||||
| Transportation | Transportation |
|
||||
|:-------------------------------------------------------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------------------------------------------------------:|
|
||||
|  |  |
|
||||
| Speed Estimation on Road using Ultralytics YOLOv8 | Speed Estimation on Bridge using Ultralytics YOLOv8 |
|
||||
|
||||
!!! Example "Speed Estimation using YOLOv8 Example"
|
||||
|
||||
=== "Speed Estimation"
|
||||
```python
|
||||
from ultralytics import YOLO
|
||||
from ultralytics.solutions import speed_estimation
|
||||
import cv2
|
||||
|
||||
model = YOLO("yolov8n.pt")
|
||||
names = model.model.names
|
||||
|
||||
cap = cv2.VideoCapture("path/to/video/file.mp4")
|
||||
assert cap.isOpened(), "Error reading video file"
|
||||
|
||||
# Video writer
|
||||
video_writer = cv2.VideoWriter("speed_estimation.avi",
|
||||
cv2.VideoWriter_fourcc(*'mp4v'),
|
||||
int(cap.get(5)),
|
||||
(int(cap.get(3)), int(cap.get(4))))
|
||||
|
||||
line_pts = [(0, 360), (1280, 360)]
|
||||
|
||||
# Init speed-estimation obj
|
||||
speed_obj = speed_estimation.SpeedEstimator()
|
||||
speed_obj.set_args(reg_pts=line_pts,
|
||||
names=names,
|
||||
view_img=True)
|
||||
|
||||
while cap.isOpened():
|
||||
|
||||
success, im0 = cap.read()
|
||||
if not success:
|
||||
print("Video frame is empty or video processing has been successfully completed.")
|
||||
break
|
||||
|
||||
tracks = model.track(im0, persist=True, show=False)
|
||||
|
||||
im0 = speed_obj.estimate_speed(im0, tracks)
|
||||
video_writer.write(im0)
|
||||
|
||||
cap.release()
|
||||
video_writer.release()
|
||||
cv2.destroyAllWindows()
|
||||
|
||||
```
|
||||
|
||||
???+ warning "Speed is Estimate"
|
||||
|
||||
Speed will be an estimate and may not be completely accurate. Additionally, the estimation can vary depending on GPU speed.
|
||||
|
||||
|
||||
### Optional Arguments `set_args`
|
||||
|
||||
| Name | Type | Default | Description |
|
||||
|---------------------|-------------|----------------------------|---------------------------------------------------|
|
||||
| reg_pts | `list` | `[(20, 400), (1260, 400)]` | Points defining the Region Area |
|
||||
| names | `dict` | `None` | Classes names |
|
||||
| view_img | `bool` | `False` | Display frames with counts |
|
||||
| line_thickness | `int` | `2` | Increase bounding boxes thickness |
|
||||
| region_thickness | `int` | `5` | Thickness for object counter region or line |
|
||||
| spdl_dist_thresh | `int` | `10` | Euclidean Distance threshold for speed check line |
|
||||
|
||||
### Arguments `model.track`
|
||||
|
||||
| Name | Type | Default | Description |
|
||||
|-----------|---------|----------------|-------------------------------------------------------------|
|
||||
| `source` | `im0` | `None` | source directory for images or videos |
|
||||
| `persist` | `bool` | `False` | persisting tracks between frames |
|
||||
| `tracker` | `str` | `botsort.yaml` | Tracking method 'bytetrack' or 'botsort' |
|
||||
| `conf` | `float` | `0.3` | Confidence Threshold |
|
||||
| `iou` | `float` | `0.5` | IOU Threshold |
|
||||
| `classes` | `list` | `None` | filter results by class, i.e. classes=0, or classes=[0,2,3] |
|
||||
| `verbose` | `bool` | `True` | Display the object tracking results |
|
||||
Loading…
Add table
Add a link
Reference in a new issue