Fix mkdocs.yml raw image URLs (#14213)
Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com> Co-authored-by: UltralyticsAssistant <web@ultralytics.com> Co-authored-by: Burhan <62214284+Burhan-Q@users.noreply.github.com>
This commit is contained in:
parent
d5db9c916f
commit
5d479c73c2
69 changed files with 4767 additions and 223 deletions
|
|
@ -63,35 +63,33 @@ Before diving into the usage instructions for YOLOv8 model training with Weights
|
|||
|
||||
=== "Python"
|
||||
|
||||
```python
|
||||
import wandb
|
||||
from wandb.integration.ultralytics import add_wandb_callback
|
||||
```python
|
||||
import wandb
|
||||
from wandb.integration.ultralytics import add_wandb_callback
|
||||
|
||||
from ultralytics import YOLO
|
||||
from ultralytics import YOLO
|
||||
|
||||
# Step 1: Initialize a Weights & Biases run
|
||||
wandb.init(project="ultralytics", job_type="training")
|
||||
# Initialize a Weights & Biases run
|
||||
wandb.init(project="ultralytics", job_type="training")
|
||||
|
||||
# Step 2: Define the YOLOv8 Model and Dataset
|
||||
model_name = "yolov8n"
|
||||
dataset_name = "coco8.yaml"
|
||||
model = YOLO(f"{model_name}.pt")
|
||||
# Load a YOLO model
|
||||
model = YOLO("yolov8n.pt")
|
||||
|
||||
# Step 3: Add W&B Callback for Ultralytics
|
||||
add_wandb_callback(model, enable_model_checkpointing=True)
|
||||
# Add W&B Callback for Ultralytics
|
||||
add_wandb_callback(model, enable_model_checkpointing=True)
|
||||
|
||||
# Step 4: Train and Fine-Tune the Model
|
||||
model.train(project="ultralytics", data=dataset_name, epochs=5, imgsz=640)
|
||||
# Train and Fine-Tune the Model
|
||||
model.train(project="ultralytics", data="coco8.yaml", epochs=5, imgsz=640)
|
||||
|
||||
# Step 5: Validate the Model
|
||||
model.val()
|
||||
# Validate the Model
|
||||
model.val()
|
||||
|
||||
# Step 6: Perform Inference and Log Results
|
||||
model(["path/to/image1", "path/to/image2"])
|
||||
# Perform Inference and Log Results
|
||||
model(["path/to/image1", "path/to/image2"])
|
||||
|
||||
# Step 7: Finalize the W&B Run
|
||||
wandb.finish()
|
||||
```
|
||||
# Finalize the W&B Run
|
||||
wandb.finish()
|
||||
```
|
||||
|
||||
### Understanding the Code
|
||||
|
||||
|
|
@ -150,3 +148,86 @@ This guide helped you explore Ultralytics' YOLOv8 integration with Weights & Bia
|
|||
For further details on usage, visit [Weights & Biases' official documentation](https://docs.wandb.ai/guides/integrations/ultralytics).
|
||||
|
||||
Also, be sure to check out the [Ultralytics integration guide page](../integrations/index.md), to learn more about different exciting integrations.
|
||||
|
||||
## FAQ
|
||||
|
||||
### How do I install the required packages for YOLOv8 and Weights & Biases?
|
||||
|
||||
To install the required packages for YOLOv8 and Weights & Biases, open your command line interface and run:
|
||||
|
||||
```bash
|
||||
pip install --upgrade ultralytics==8.0.186 wandb
|
||||
```
|
||||
|
||||
For further guidance on installation steps, refer to our [YOLOv8 Installation guide](../quickstart.md). If you encounter issues, consult the [Common Issues guide](../guides/yolo-common-issues.md) for troubleshooting tips.
|
||||
|
||||
### What are the benefits of integrating Ultralytics YOLOv8 with Weights & Biases?
|
||||
|
||||
Integrating Ultralytics YOLOv8 with Weights & Biases offers several benefits including:
|
||||
|
||||
- **Real-Time Metrics Tracking:** Observe metric changes during training for immediate insights.
|
||||
- **Hyperparameter Optimization:** Improve model performance by fine-tuning learning rate, batch size, etc.
|
||||
- **Comparative Analysis:** Side-by-side comparison of different training runs.
|
||||
- **Resource Monitoring:** Keep track of CPU, GPU, and memory usage.
|
||||
- **Model Artifacts Management:** Easy access and sharing of model checkpoints.
|
||||
|
||||
Explore these features in detail in the Weights & Biases Dashboard section above.
|
||||
|
||||
### How can I configure Weights & Biases for YOLOv8 training?
|
||||
|
||||
To configure Weights & Biases for YOLOv8 training, follow these steps:
|
||||
|
||||
1. Run the command to initialize Weights & Biases:
|
||||
```bash
|
||||
import wandb
|
||||
wandb.login()
|
||||
```
|
||||
2. Retrieve your API key from the Weights & Biases website.
|
||||
3. Use the API key to authenticate your development environment.
|
||||
|
||||
Detailed setup instructions can be found in the Configuring Weights & Biases section above.
|
||||
|
||||
### How do I train a YOLOv8 model using Weights & Biases?
|
||||
|
||||
For training a YOLOv8 model using Weights & Biases, use the following steps in a Python script:
|
||||
|
||||
```python
|
||||
import wandb
|
||||
from wandb.integration.ultralytics import add_wandb_callback
|
||||
|
||||
from ultralytics import YOLO
|
||||
|
||||
# Initialize a Weights & Biases run
|
||||
wandb.init(project="ultralytics", job_type="training")
|
||||
|
||||
# Load a YOLO model
|
||||
model = YOLO("yolov8n.pt")
|
||||
|
||||
# Add W&B Callback for Ultralytics
|
||||
add_wandb_callback(model, enable_model_checkpointing=True)
|
||||
|
||||
# Train and Fine-Tune the Model
|
||||
model.train(project="ultralytics", data="coco8.yaml", epochs=5, imgsz=640)
|
||||
|
||||
# Validate the Model
|
||||
model.val()
|
||||
|
||||
# Perform Inference and Log Results
|
||||
model(["path/to/image1", "path/to/image2"])
|
||||
|
||||
# Finalize the W&B Run
|
||||
wandb.finish()
|
||||
```
|
||||
|
||||
This script initializes Weights & Biases, sets up the model, trains it, and logs results. For more details, visit the Usage section above.
|
||||
|
||||
### Why should I use Ultralytics YOLOv8 with Weights & Biases over other platforms?
|
||||
|
||||
Ultralytics YOLOv8 integrated with Weights & Biases offers several unique advantages:
|
||||
|
||||
- **High Efficiency:** Real-time tracking of training metrics and performance optimization.
|
||||
- **Scalability:** Easily manage large-scale training jobs with robust resource monitoring and utilization tools.
|
||||
- **Interactivity:** A user-friendly interactive UI for data visualization and model management.
|
||||
- **Community and Support:** Strong integration documentation and community support with flexible customization and enhancement options.
|
||||
|
||||
For comparisons with other platforms like Comet and ClearML, refer to [Ultralytics integrations](../integrations/index.md).
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue