Fix mkdocs.yml raw image URLs (#14213)
Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com> Co-authored-by: UltralyticsAssistant <web@ultralytics.com> Co-authored-by: Burhan <62214284+Burhan-Q@users.noreply.github.com>
This commit is contained in:
parent
d5db9c916f
commit
5d479c73c2
69 changed files with 4767 additions and 223 deletions
|
|
@ -169,3 +169,110 @@ This guide has led you through the process of integrating DVCLive with Ultralyti
|
|||
For further details on usage, visit [DVCLive's official documentation](https://dvc.org/doc/dvclive/ml-frameworks/yolo).
|
||||
|
||||
Additionally, explore more integrations and capabilities of Ultralytics by visiting the [Ultralytics integration guide page](../integrations/index.md), which is a collection of great resources and insights.
|
||||
|
||||
## FAQ
|
||||
|
||||
### How do I integrate DVCLive with Ultralytics YOLOv8 for experiment tracking?
|
||||
|
||||
Integrating DVCLive with Ultralytics YOLOv8 is straightforward. Start by installing the necessary packages:
|
||||
|
||||
!!! Example "Installation"
|
||||
|
||||
=== "CLI"
|
||||
|
||||
```bash
|
||||
pip install ultralytics dvclive
|
||||
```
|
||||
|
||||
Next, initialize a Git repository and configure DVCLive in your project:
|
||||
|
||||
!!! Example "Initial Environment Setup"
|
||||
|
||||
=== "CLI"
|
||||
|
||||
```bash
|
||||
git init -q
|
||||
git config --local user.email "you@example.com"
|
||||
git config --local user.name "Your Name"
|
||||
dvc init -q
|
||||
git commit -m "DVC init"
|
||||
```
|
||||
|
||||
Follow our [YOLOv8 Installation guide](../quickstart.md) for detailed setup instructions.
|
||||
|
||||
### Why should I use DVCLive for tracking YOLOv8 experiments?
|
||||
|
||||
Using DVCLive with YOLOv8 provides several advantages, such as:
|
||||
|
||||
- **Automated Logging**: DVCLive automatically records key experiment details like model parameters and metrics.
|
||||
- **Easy Comparison**: Facilitates comparison of results across different runs.
|
||||
- **Visualization Tools**: Leverages DVCLive's robust data visualization capabilities for in-depth analysis.
|
||||
|
||||
For further details, refer to our guide on [YOLOv8 Model Training](../modes/train.md) and [YOLO Performance Metrics](../guides/yolo-performance-metrics.md) to maximize your experiment tracking efficiency.
|
||||
|
||||
### How can DVCLive improve my results analysis for YOLOv8 training sessions?
|
||||
|
||||
After completing your YOLOv8 training sessions, DVCLive helps in visualizing and analyzing the results effectively. Example code for loading and displaying experiment data:
|
||||
|
||||
```python
|
||||
import dvc.api
|
||||
import pandas as pd
|
||||
|
||||
# Define columns of interest
|
||||
columns = ["Experiment", "epochs", "imgsz", "model", "metrics.mAP50-95(B)"]
|
||||
|
||||
# Retrieve experiment data
|
||||
df = pd.DataFrame(dvc.api.exp_show(), columns=columns)
|
||||
|
||||
# Clean data
|
||||
df.dropna(inplace=True)
|
||||
df.reset_index(drop=True, inplace=True)
|
||||
|
||||
# Display DataFrame
|
||||
print(df)
|
||||
```
|
||||
|
||||
To visualize results interactively, use Plotly's parallel coordinates plot:
|
||||
|
||||
```python
|
||||
from plotly.express import parallel_coordinates
|
||||
|
||||
fig = parallel_coordinates(df, columns, color="metrics.mAP50-95(B)")
|
||||
fig.show()
|
||||
```
|
||||
|
||||
Refer to our guide on [YOLOv8 Training with DVCLive](#yolov8-training-with-dvclive) for more examples and best practices.
|
||||
|
||||
### What are the steps to configure my environment for DVCLive and YOLOv8 integration?
|
||||
|
||||
To configure your environment for a smooth integration of DVCLive and YOLOv8, follow these steps:
|
||||
|
||||
1. **Install Required Packages**: Use `pip install ultralytics dvclive`.
|
||||
2. **Initialize Git Repository**: Run `git init -q`.
|
||||
3. **Setup DVCLive**: Execute `dvc init -q`.
|
||||
4. **Commit to Git**: Use `git commit -m "DVC init"`.
|
||||
|
||||
These steps ensure proper version control and setup for experiment tracking. For in-depth configuration details, visit our [Configuration guide](../quickstart.md).
|
||||
|
||||
### How do I visualize YOLOv8 experiment results using DVCLive?
|
||||
|
||||
DVCLive offers powerful tools to visualize the results of YOLOv8 experiments. Here's how you can generate comparative plots:
|
||||
|
||||
!!! Example "Generate Comparative Plots"
|
||||
|
||||
=== "CLI"
|
||||
|
||||
```bash
|
||||
dvc plots diff $(dvc exp list --names-only)
|
||||
```
|
||||
|
||||
To display these plots in a Jupyter Notebook, use:
|
||||
|
||||
```python
|
||||
from IPython.display import HTML
|
||||
|
||||
# Display plots as HTML
|
||||
HTML(filename="./dvc_plots/index.html")
|
||||
```
|
||||
|
||||
These visualizations help identify trends and optimize model performance. Check our detailed guides on [YOLOv8 Experiment Analysis](#analyzing-results) for comprehensive steps and examples.
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue