Fix mkdocs.yml raw image URLs (#14213)

Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com>
Co-authored-by: UltralyticsAssistant <web@ultralytics.com>
Co-authored-by: Burhan <62214284+Burhan-Q@users.noreply.github.com>
This commit is contained in:
Glenn Jocher 2024-07-05 02:25:02 +02:00 committed by GitHub
parent d5db9c916f
commit 5d479c73c2
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
69 changed files with 4767 additions and 223 deletions

View file

@ -4,7 +4,7 @@ description: Learn to accurately identify and count objects in real-time using U
keywords: object counting, YOLOv8, Ultralytics, real-time object detection, AI, deep learning, object tracking, crowd analysis, surveillance, resource optimization
---
# Object Counting using Ultralytics YOLOv8 🚀
# Object Counting using Ultralytics YOLOv8
## What is Object Counting?
@ -253,3 +253,125 @@ Here's a table with the `ObjectCounter` arguments:
| `iou` | `float` | `0.5` | IOU Threshold |
| `classes` | `list` | `None` | filter results by class, i.e. classes=0, or classes=[0,2,3] |
| `verbose` | `bool` | `True` | Display the object tracking results |
## FAQ
### How do I count objects in a video using Ultralytics YOLOv8?
To count objects in a video using Ultralytics YOLOv8, you can follow these steps:
1. Import the necessary libraries (`cv2`, `ultralytics`).
2. Load a pretrained YOLOv8 model.
3. Define the counting region (e.g., a polygon, line, etc.).
4. Set up the video capture and initialize the object counter.
5. Process each frame to track objects and count them within the defined region.
Here's a simple example for counting in a region:
```python
import cv2
from ultralytics import YOLO, solutions
def count_objects_in_region(video_path, output_video_path, model_path):
"""Count objects in a specific region within a video."""
model = YOLO(model_path)
cap = cv2.VideoCapture(video_path)
assert cap.isOpened(), "Error reading video file"
w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH, cv2.CAP_PROP_FRAME_HEIGHT, cv2.CAP_PROP_FPS))
region_points = [(20, 400), (1080, 404), (1080, 360), (20, 360)]
video_writer = cv2.VideoWriter(output_video_path, cv2.VideoWriter_fourcc(*"mp4v"), fps, (w, h))
counter = solutions.ObjectCounter(
view_img=True, reg_pts=region_points, classes_names=model.names, draw_tracks=True, line_thickness=2
)
while cap.isOpened():
success, im0 = cap.read()
if not success:
print("Video frame is empty or video processing has been successfully completed.")
break
tracks = model.track(im0, persist=True, show=False)
im0 = counter.start_counting(im0, tracks)
video_writer.write(im0)
cap.release()
video_writer.release()
cv2.destroyAllWindows()
count_objects_in_region("path/to/video.mp4", "output_video.avi", "yolov8n.pt")
```
Explore more configurations and options in the [Object Counting](#object-counting-using-ultralytics-yolov8) section.
### What are the advantages of using Ultralytics YOLOv8 for object counting?
Using Ultralytics YOLOv8 for object counting offers several advantages:
1. **Resource Optimization:** It facilitates efficient resource management by providing accurate counts, helping optimize resource allocation in industries like inventory management.
2. **Enhanced Security:** It enhances security and surveillance by accurately tracking and counting entities, aiding in proactive threat detection.
3. **Informed Decision-Making:** It offers valuable insights for decision-making, optimizing processes in domains like retail, traffic management, and more.
For real-world applications and code examples, visit the [Advantages of Object Counting](#advantages-of-object-counting) section.
### How can I count specific classes of objects using Ultralytics YOLOv8?
To count specific classes of objects using Ultralytics YOLOv8, you need to specify the classes you are interested in during the tracking phase. Below is a Python example:
```python
import cv2
from ultralytics import YOLO, solutions
def count_specific_classes(video_path, output_video_path, model_path, classes_to_count):
"""Count specific classes of objects in a video."""
model = YOLO(model_path)
cap = cv2.VideoCapture(video_path)
assert cap.isOpened(), "Error reading video file"
w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH, cv2.CAP_PROP_FRAME_HEIGHT, cv2.CAP_PROP_FPS))
line_points = [(20, 400), (1080, 400)]
video_writer = cv2.VideoWriter(output_video_path, cv2.VideoWriter_fourcc(*"mp4v"), fps, (w, h))
counter = solutions.ObjectCounter(
view_img=True, reg_pts=line_points, classes_names=model.names, draw_tracks=True, line_thickness=2
)
while cap.isOpened():
success, im0 = cap.read()
if not success:
print("Video frame is empty or video processing has been successfully completed.")
break
tracks = model.track(im0, persist=True, show=False, classes=classes_to_count)
im0 = counter.start_counting(im0, tracks)
video_writer.write(im0)
cap.release()
video_writer.release()
cv2.destroyAllWindows()
count_specific_classes("path/to/video.mp4", "output_specific_classes.avi", "yolov8n.pt", [0, 2])
```
In this example, `classes_to_count=[0, 2]`, which means it counts objects of class `0` and `2` (e.g., person and car).
### Why should I use YOLOv8 over other object detection models for real-time applications?
Ultralytics YOLOv8 provides several advantages over other object detection models like Faster R-CNN, SSD, and previous YOLO versions:
1. **Speed and Efficiency:** YOLOv8 offers real-time processing capabilities, making it ideal for applications requiring high-speed inference, such as surveillance and autonomous driving.
2. **Accuracy:** It provides state-of-the-art accuracy for object detection and tracking tasks, reducing the number of false positives and improving overall system reliability.
3. **Ease of Integration:** YOLOv8 offers seamless integration with various platforms and devices, including mobile and edge devices, which is crucial for modern AI applications.
4. **Flexibility:** Supports various tasks like object detection, segmentation, and tracking with configurable models to meet specific use-case requirements.
Check out Ultralytics [YOLOv8 Documentation](https://docs.ultralytics.com/models/yolov8) for a deeper dive into its features and performance comparisons.
### Can I use YOLOv8 for advanced applications like crowd analysis and traffic management?
Yes, Ultralytics YOLOv8 is perfectly suited for advanced applications like crowd analysis and traffic management due to its real-time detection capabilities, scalability, and integration flexibility. Its advanced features allow for high-accuracy object tracking, counting, and classification in dynamic environments. Example use cases include:
- **Crowd Analysis:** Monitor and manage large gatherings, ensuring safety and optimizing crowd flow.
- **Traffic Management:** Track and count vehicles, analyze traffic patterns, and manage congestion in real-time.
For more information and implementation details, refer to the guide on [Real World Applications](#real-world-applications) of object counting with YOLOv8.