Fix mkdocs.yml raw image URLs (#14213)
Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com> Co-authored-by: UltralyticsAssistant <web@ultralytics.com> Co-authored-by: Burhan <62214284+Burhan-Q@users.noreply.github.com>
This commit is contained in:
parent
d5db9c916f
commit
5d479c73c2
69 changed files with 4767 additions and 223 deletions
|
|
@ -14,7 +14,7 @@ After performing the [Segment Task](../tasks/segment.md), it's sometimes desirab
|
|||
|
||||
## Recipe Walk Through
|
||||
|
||||
1. See the [Ultralytics Quickstart Installation section](../quickstart.md/#install-ultralytics) for a quick walkthrough on installing the required libraries.
|
||||
1. See the [Ultralytics Quickstart Installation section](../quickstart.md) for a quick walkthrough on installing the required libraries.
|
||||
|
||||
***
|
||||
|
||||
|
|
@ -307,3 +307,93 @@ for r in res:
|
|||
4. See [Segment Task](../tasks/segment.md#models) for more information.
|
||||
5. Learn more about [Working with Results](../modes/predict.md#working-with-results)
|
||||
6. Learn more about [Segmentation Mask Results](../modes/predict.md#masks)
|
||||
|
||||
## FAQ
|
||||
|
||||
### How do I isolate objects using Ultralytics YOLOv8 for segmentation tasks?
|
||||
|
||||
To isolate objects using Ultralytics YOLOv8, follow these steps:
|
||||
|
||||
1. **Load the model and run inference:**
|
||||
|
||||
```python
|
||||
from ultralytics import YOLO
|
||||
|
||||
model = YOLO("yolov8n-seg.pt")
|
||||
results = model.predict(source="path/to/your/image.jpg")
|
||||
```
|
||||
|
||||
2. **Generate a binary mask and draw contours:**
|
||||
|
||||
```python
|
||||
import cv2
|
||||
import numpy as np
|
||||
|
||||
img = np.copy(results[0].orig_img)
|
||||
b_mask = np.zeros(img.shape[:2], np.uint8)
|
||||
contour = results[0].masks.xy[0].astype(np.int32).reshape(-1, 1, 2)
|
||||
cv2.drawContours(b_mask, [contour], -1, (255, 255, 255), cv2.FILLED)
|
||||
```
|
||||
|
||||
3. **Isolate the object using the binary mask:**
|
||||
```python
|
||||
mask3ch = cv2.cvtColor(b_mask, cv2.COLOR_GRAY2BGR)
|
||||
isolated = cv2.bitwise_and(mask3ch, img)
|
||||
```
|
||||
|
||||
Refer to the guide on [Predict Mode](../modes/predict.md) and the [Segment Task](../tasks/segment.md) for more information.
|
||||
|
||||
### What options are available for saving the isolated objects after segmentation?
|
||||
|
||||
Ultralytics YOLOv8 offers two main options for saving isolated objects:
|
||||
|
||||
1. **With a Black Background:**
|
||||
|
||||
```python
|
||||
mask3ch = cv2.cvtColor(b_mask, cv2.COLOR_GRAY2BGR)
|
||||
isolated = cv2.bitwise_and(mask3ch, img)
|
||||
```
|
||||
|
||||
2. **With a Transparent Background:**
|
||||
```python
|
||||
isolated = np.dstack([img, b_mask])
|
||||
```
|
||||
|
||||
For further details, visit the [Predict Mode](../modes/predict.md) section.
|
||||
|
||||
### How can I crop isolated objects to their bounding boxes using Ultralytics YOLOv8?
|
||||
|
||||
To crop isolated objects to their bounding boxes:
|
||||
|
||||
1. **Retrieve bounding box coordinates:**
|
||||
|
||||
```python
|
||||
x1, y1, x2, y2 = results[0].boxes.xyxy[0].cpu().numpy().astype(np.int32)
|
||||
```
|
||||
|
||||
2. **Crop the isolated image:**
|
||||
```python
|
||||
iso_crop = isolated[y1:y2, x1:x2]
|
||||
```
|
||||
|
||||
Learn more about bounding box results in the [Predict Mode](../modes/predict.md#boxes) documentation.
|
||||
|
||||
### Why should I use Ultralytics YOLOv8 for object isolation in segmentation tasks?
|
||||
|
||||
Ultralytics YOLOv8 provides:
|
||||
|
||||
- **High-speed** real-time object detection and segmentation.
|
||||
- **Accurate bounding box and mask generation** for precise object isolation.
|
||||
- **Comprehensive documentation** and easy-to-use API for efficient development.
|
||||
|
||||
Explore the benefits of using YOLO in the [Segment Task documentation](../tasks/segment.md).
|
||||
|
||||
### Can I save isolated objects including the background using Ultralytics YOLOv8?
|
||||
|
||||
Yes, this is a built-in feature in Ultralytics YOLOv8. Use the `save_crop` argument in the `predict()` method. For example:
|
||||
|
||||
```python
|
||||
results = model.predict(source="path/to/your/image.jpg", save_crop=True)
|
||||
```
|
||||
|
||||
Read more about the `save_crop` argument in the [Predict Mode Inference Arguments](../modes/predict.md#inference-arguments) section.
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue