ultralytics 8.0.80 single-line docstring fixes (#2060)

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
This commit is contained in:
Glenn Jocher 2023-04-16 15:20:11 +02:00 committed by GitHub
parent 31db8ed163
commit 5bce1c3021
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
48 changed files with 418 additions and 420 deletions

View file

@ -134,7 +134,7 @@ class BasePredictor:
if not self.args.retina_masks:
plot_args['im_gpu'] = im[idx]
self.plotted_img = result.plot(**plot_args)
# write
# Write
if self.args.save_txt:
result.save_txt(f'{self.txt_path}.txt', save_conf=self.args.save_conf)
if self.args.save_crop:
@ -153,7 +153,7 @@ class BasePredictor:
return list(self.stream_inference(source, model)) # merge list of Result into one
def predict_cli(self, source=None, model=None):
# Method used for CLI prediction. It uses always generator as outputs as not required by CLI mode
"""Method used for CLI prediction. It uses always generator as outputs as not required by CLI mode."""
gen = self.stream_inference(source, model)
for _ in gen: # running CLI inference without accumulating any outputs (do not modify)
pass
@ -182,16 +182,16 @@ class BasePredictor:
if self.args.verbose:
LOGGER.info('')
# setup model
# Setup model
if not self.model:
self.setup_model(model)
# setup source every time predict is called
# Setup source every time predict is called
self.setup_source(source if source is not None else self.args.source)
# check if save_dir/ label file exists
# Check if save_dir/ label file exists
if self.args.save or self.args.save_txt:
(self.save_dir / 'labels' if self.args.save_txt else self.save_dir).mkdir(parents=True, exist_ok=True)
# warmup model
# Warmup model
if not self.done_warmup:
self.model.warmup(imgsz=(1 if self.model.pt or self.model.triton else self.dataset.bs, 3, *self.imgsz))
self.done_warmup = True
@ -204,22 +204,22 @@ class BasePredictor:
path, im, im0s, vid_cap, s = batch
visualize = increment_path(self.save_dir / Path(path).stem, mkdir=True) if self.args.visualize else False
# preprocess
# Preprocess
with self.dt[0]:
im = self.preprocess(im)
if len(im.shape) == 3:
im = im[None] # expand for batch dim
# inference
# Inference
with self.dt[1]:
preds = self.model(im, augment=self.args.augment, visualize=visualize)
# postprocess
# Postprocess
with self.dt[2]:
self.results = self.postprocess(preds, im, im0s)
self.run_callbacks('on_predict_postprocess_end')
# visualize, save, write results
# Visualize, save, write results
n = len(im)
for i in range(n):
self.results[i].speed = {
@ -288,7 +288,7 @@ class BasePredictor:
def save_preds(self, vid_cap, idx, save_path):
im0 = self.plotted_img
# save imgs
# Save imgs
if self.dataset.mode == 'image':
cv2.imwrite(save_path, im0)
else: # 'video' or 'stream'