ultralytics 8.0.80 single-line docstring fixes (#2060)
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
This commit is contained in:
parent
31db8ed163
commit
5bce1c3021
48 changed files with 418 additions and 420 deletions
|
|
@ -24,7 +24,7 @@ from ultralytics.yolo.utils.torch_utils import copy_attr, smart_inference_mode
|
|||
|
||||
|
||||
class AutoShape(nn.Module):
|
||||
# YOLOv8 input-robust model wrapper for passing cv2/np/PIL/torch inputs. Includes preprocessing, inference and NMS
|
||||
"""YOLOv8 input-robust model wrapper for passing cv2/np/PIL/torch inputs. Includes preprocessing, inference and NMS."""
|
||||
conf = 0.25 # NMS confidence threshold
|
||||
iou = 0.45 # NMS IoU threshold
|
||||
agnostic = False # NMS class-agnostic
|
||||
|
|
@ -47,7 +47,7 @@ class AutoShape(nn.Module):
|
|||
m.export = True # do not output loss values
|
||||
|
||||
def _apply(self, fn):
|
||||
# Apply to(), cpu(), cuda(), half() to model tensors that are not parameters or registered buffers
|
||||
"""Apply to(), cpu(), cuda(), half() to model tensors that are not parameters or registered buffers."""
|
||||
self = super()._apply(fn)
|
||||
if self.pt:
|
||||
m = self.model.model.model[-1] if self.dmb else self.model.model[-1] # Detect()
|
||||
|
|
@ -59,7 +59,7 @@ class AutoShape(nn.Module):
|
|||
|
||||
@smart_inference_mode()
|
||||
def forward(self, ims, size=640, augment=False, profile=False):
|
||||
# Inference from various sources. For size(height=640, width=1280), RGB images example inputs are:
|
||||
"""Inference from various sources. For size(height=640, width=1280), RGB images example inputs are:."""
|
||||
# file: ims = 'data/images/zidane.jpg' # str or PosixPath
|
||||
# URI: = 'https://ultralytics.com/images/zidane.jpg'
|
||||
# OpenCV: = cv2.imread('image.jpg')[:,:,::-1] # HWC BGR to RGB x(640,1280,3)
|
||||
|
|
@ -202,7 +202,7 @@ class Detections:
|
|||
return self.ims
|
||||
|
||||
def pandas(self):
|
||||
# return detections as pandas DataFrames, i.e. print(results.pandas().xyxy[0])
|
||||
"""Return detections as pandas DataFrames, i.e. print(results.pandas().xyxy[0])."""
|
||||
import pandas
|
||||
new = copy(self) # return copy
|
||||
ca = 'xmin', 'ymin', 'xmax', 'ymax', 'confidence', 'class', 'name' # xyxy columns
|
||||
|
|
@ -213,7 +213,7 @@ class Detections:
|
|||
return new
|
||||
|
||||
def tolist(self):
|
||||
# return a list of Detections objects, i.e. 'for result in results.tolist():'
|
||||
"""Return a list of Detections objects, i.e. 'for result in results.tolist():'."""
|
||||
r = range(self.n) # iterable
|
||||
x = [Detections([self.ims[i]], [self.pred[i]], [self.files[i]], self.times, self.names, self.s) for i in r]
|
||||
# for d in x:
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue