ultralytics 8.3.71 require explicit torch.nn usage (#19067)
Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com> Co-authored-by: RizwanMunawar <chr043416@gmail.com> Co-authored-by: Muhammad Rizwan Munawar <muhammadrizwanmunawar123@gmail.com> Co-authored-by: UltralyticsAssistant <web@ultralytics.com>
This commit is contained in:
parent
17450e9646
commit
5bca9341e8
10 changed files with 50 additions and 51 deletions
|
|
@ -426,8 +426,7 @@ class SAM2Model(torch.nn.Module):
|
|||
high_res_masks: Tensor of shape (B, 1, H*16, W*16) with the best high-resolution mask.
|
||||
obj_ptr: Tensor of shape (B, C) with object pointer vector for the output mask.
|
||||
object_score_logits: Tensor of shape (B) with object score logits.
|
||||
|
||||
Where M is 3 if multimask_output=True, and 1 if multimask_output=False.
|
||||
Where M is 3 if multimask_output=True, and 1 if multimask_output=False.
|
||||
|
||||
Examples:
|
||||
>>> backbone_features = torch.rand(1, 256, 32, 32)
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue