[Example] RTDETR-ONNXRuntime-Python (#18369)
This commit is contained in:
parent
12db1f3143
commit
5b76bed7d0
3 changed files with 257 additions and 0 deletions
213
examples/RTDETR-ONNXRuntime-Python/main.py
Normal file
213
examples/RTDETR-ONNXRuntime-Python/main.py
Normal file
|
|
@ -0,0 +1,213 @@
|
|||
import argparse
|
||||
|
||||
import cv2
|
||||
import numpy as np
|
||||
import onnxruntime as ort
|
||||
import torch
|
||||
|
||||
from ultralytics.utils import ASSETS, yaml_load
|
||||
from ultralytics.utils.checks import check_requirements, check_yaml
|
||||
|
||||
class RTDETR:
|
||||
"""RTDETR object detection model class for handling inference and visualization."""
|
||||
|
||||
def __init__(self, model_path, img_path, conf_thres=0.5, iou_thres=0.5):
|
||||
"""
|
||||
Initializes the RTDETR object with the specified parameters.
|
||||
|
||||
Args:
|
||||
model_path: Path to the ONNX model file.
|
||||
img_path: Path to the input image.
|
||||
conf_thres: Confidence threshold for object detection.
|
||||
iou_thres: IoU threshold for non-maximum suppression
|
||||
"""
|
||||
self.model_path = model_path
|
||||
self.img_path = img_path
|
||||
self.conf_thres = conf_thres
|
||||
self.iou_thres = iou_thres
|
||||
|
||||
# Set up the ONNX runtime session with CUDA and CPU execution providers
|
||||
self.session = ort.InferenceSession(model_path, providers=["CUDAExecutionProvider", "CPUExecutionProvider"])
|
||||
self.model_input = self.session.get_inputs()
|
||||
self.input_width = self.model_input[0].shape[2]
|
||||
self.input_height = self.model_input[0].shape[3]
|
||||
|
||||
# Load class names from the COCO dataset YAML file
|
||||
self.classes = yaml_load(check_yaml("coco8.yaml"))["names"]
|
||||
|
||||
# Generate a color palette for drawing bounding boxes
|
||||
self.color_palette = np.random.uniform(0, 255, size=(len(self.classes), 3))
|
||||
|
||||
def draw_detections(self, box, score, class_id):
|
||||
"""
|
||||
Draws bounding boxes and labels on the input image based on the detected objects.
|
||||
|
||||
Args:
|
||||
box: Detected bounding box.
|
||||
score: Corresponding detection score.
|
||||
class_id: Class ID for the detected object.
|
||||
|
||||
Returns:
|
||||
None
|
||||
"""
|
||||
# Extract the coordinates of the bounding box
|
||||
x1, y1, x2, y2 = box
|
||||
|
||||
# Retrieve the color for the class ID
|
||||
color = self.color_palette[class_id]
|
||||
|
||||
# Draw the bounding box on the image
|
||||
cv2.rectangle(self.img, (int(x1), int(y1)), (int(x2), int(y2)), color, 2)
|
||||
|
||||
# Create the label text with class name and score
|
||||
label = f"{self.classes[class_id]}: {score:.2f}"
|
||||
|
||||
# Calculate the dimensions of the label text
|
||||
(label_width, label_height), _ = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, 0.5, 1)
|
||||
|
||||
# Calculate the position of the label text
|
||||
label_x = x1
|
||||
label_y = y1 - 10 if y1 - 10 > label_height else y1 + 10
|
||||
|
||||
# Draw a filled rectangle as the background for the label text
|
||||
cv2.rectangle(
|
||||
self.img, (int(label_x), int(label_y - label_height)), (int(label_x + label_width), int(label_y + label_height)), color, cv2.FILLED
|
||||
)
|
||||
|
||||
# Draw the label text on the image
|
||||
cv2.putText(self.img, label, (int(label_x), int(label_y)), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 0), 1, cv2.LINE_AA)
|
||||
|
||||
def preprocess(self):
|
||||
"""
|
||||
Preprocesses the input image before performing inference.
|
||||
|
||||
Returns:
|
||||
image_data: Preprocessed image data ready for inference.
|
||||
"""
|
||||
# Read the input image using OpenCV
|
||||
self.img = cv2.imread(self.img_path)
|
||||
|
||||
# Get the height and width of the input image
|
||||
self.img_height, self.img_width = self.img.shape[:2]
|
||||
|
||||
# Convert the image color space from BGR to RGB
|
||||
img = cv2.cvtColor(self.img, cv2.COLOR_BGR2RGB)
|
||||
|
||||
# Resize the image to match the input shape
|
||||
img = cv2.resize(img, (self.input_width, self.input_height))
|
||||
|
||||
# Normalize the image data by dividing it by 255.0
|
||||
image_data = np.array(img) / 255.0
|
||||
|
||||
# Transpose the image to have the channel dimension as the first dimension
|
||||
image_data = np.transpose(image_data, (2, 0, 1)) # Channel first
|
||||
|
||||
# Expand the dimensions of the image data to match the expected input shape
|
||||
image_data = np.expand_dims(image_data, axis=0).astype(np.float32)
|
||||
|
||||
# Return the preprocessed image data
|
||||
return image_data
|
||||
|
||||
def bbox_cxcywh_to_xyxy(self, boxes):
|
||||
"""
|
||||
Converts bounding boxes from (center x, center y, width, height) format
|
||||
to (x_min, y_min, x_max, y_max) format.
|
||||
|
||||
Args:
|
||||
boxes (numpy.ndarray): An array of shape (N, 4) where each row represents
|
||||
a bounding box in (cx, cy, w, h) format.
|
||||
|
||||
Returns:
|
||||
numpy.ndarray: An array of shape (N, 4) where each row represents
|
||||
a bounding box in (x_min, y_min, x_max, y_max) format.
|
||||
"""
|
||||
# Calculate half width and half height of the bounding boxes
|
||||
half_width = boxes[:, 2] / 2
|
||||
half_height = boxes[:, 3] / 2
|
||||
|
||||
# Calculate the coordinates of the bounding boxes
|
||||
x_min = boxes[:, 0] - half_width
|
||||
y_min = boxes[:, 1] - half_height
|
||||
x_max = boxes[:, 0] + half_width
|
||||
y_max = boxes[:, 1] + half_height
|
||||
|
||||
# Return the bounding boxes in (x_min, y_min, x_max, y_max) format
|
||||
return np.column_stack((x_min, y_min, x_max, y_max))
|
||||
|
||||
def postprocess(self, model_output):
|
||||
"""
|
||||
Postprocesses the model output to extract detections and draw them on the input image.
|
||||
|
||||
Args:
|
||||
model_output: Output of the model inference.
|
||||
|
||||
Returns:
|
||||
np.array: Annotated image with detections.
|
||||
"""
|
||||
# Squeeze the model output to remove unnecessary dimensions
|
||||
outputs = np.squeeze(model_output[0])
|
||||
|
||||
# Extract bounding boxes and scores from the model output
|
||||
boxes = outputs[:, :4]
|
||||
scores = outputs[:, 4:]
|
||||
|
||||
# Get the class labels and scores for each detection
|
||||
labels = np.argmax(scores, axis=1)
|
||||
scores = np.max(scores, axis=1)
|
||||
|
||||
# Apply confidence threshold to filter out low-confidence detections
|
||||
mask = scores > self.conf_thres
|
||||
boxes, scores, labels = boxes[mask], scores[mask], labels[mask]
|
||||
|
||||
# Convert bounding boxes to (x_min, y_min, x_max, y_max) format
|
||||
boxes = self.bbox_cxcywh_to_xyxy(boxes)
|
||||
|
||||
# Scale bounding boxes to match the original image dimensions
|
||||
boxes[:, 0::2] *= self.img_width
|
||||
boxes[:, 1::2] *= self.img_height
|
||||
|
||||
# Draw detections on the image
|
||||
for box, score, label in zip(boxes, scores, labels):
|
||||
self.draw_detections(box, score, label)
|
||||
|
||||
# Return the annotated image
|
||||
return self.img
|
||||
|
||||
def main(self):
|
||||
"""
|
||||
Executes the detection on the input image using the ONNX model.
|
||||
|
||||
Returns:
|
||||
np.array: Output image with annotations.
|
||||
"""
|
||||
# Preprocess the image for model input
|
||||
image_data = self.preprocess()
|
||||
|
||||
# Run the model inference
|
||||
model_output = self.session.run(None, {self.model_input[0].name: image_data})
|
||||
|
||||
# Process and return the model output
|
||||
return self.postprocess(model_output)
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Set up argument parser for command-line arguments
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("--model", type=str, default="rtdetr-l.onnx", help="Path to the ONNX model file.")
|
||||
parser.add_argument("--img", type=str, default=str(ASSETS / "bus.jpg"), help="Path to the input image.")
|
||||
parser.add_argument("--conf-thres", type=float, default=0.5, help="Confidence threshold for object detection.")
|
||||
parser.add_argument("--iou-thres", type=float, default=0.5, help="IoU threshold for non-maximum suppression.")
|
||||
args = parser.parse_args()
|
||||
|
||||
# Check for dependencies and set up ONNX runtime
|
||||
check_requirements("onnxruntime-gpu" if torch.cuda.is_available() else "onnxruntime")
|
||||
|
||||
# Create the detector instance with specified parameters
|
||||
detection = RTDETR(args.model, args.img, args.conf_thres, args.iou_thres)
|
||||
|
||||
# Perform detection and get the output image
|
||||
output_image = detection.main()
|
||||
|
||||
# Display the annotated output image
|
||||
cv2.namedWindow("Output", cv2.WINDOW_NORMAL)
|
||||
cv2.imshow("Output", output_image)
|
||||
cv2.waitKey(0)
|
||||
Loading…
Add table
Add a link
Reference in a new issue