Improve headers and comments in TOML/YAML files (#18698)

Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>
Co-authored-by: UltralyticsAssistant <web@ultralytics.com>
This commit is contained in:
Paula Derrenger 2025-01-15 19:33:16 +01:00 committed by GitHub
parent be819455af
commit 5a58950a7c
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
98 changed files with 339 additions and 148 deletions

View file

@ -1,4 +1,4 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
name: 🐛 Bug Report name: 🐛 Bug Report
# title: " " # title: " "

View file

@ -1,4 +1,4 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
blank_issues_enabled: true blank_issues_enabled: true
contact_links: contact_links:

View file

@ -1,4 +1,4 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
name: 🚀 Feature Request name: 🚀 Feature Request
description: Suggest an Ultralytics YOLO idea description: Suggest an Ultralytics YOLO idea

View file

@ -1,4 +1,4 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
name: ❓ Question name: ❓ Question
description: Ask an Ultralytics YOLO question description: Ask an Ultralytics YOLO question

View file

@ -1,4 +1,5 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# Dependabot for package version updates # Dependabot for package version updates
# https://docs.github.com/github/administering-a-repository/configuration-options-for-dependency-updates # https://docs.github.com/github/administering-a-repository/configuration-options-for-dependency-updates

View file

@ -1,4 +1,5 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# YOLO Continuous Integration (CI) GitHub Actions tests # YOLO Continuous Integration (CI) GitHub Actions tests
name: Ultralytics CI name: Ultralytics CI

View file

@ -1,4 +1,5 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# Ultralytics Contributor License Agreement (CLA) action https://docs.ultralytics.com/help/CLA # Ultralytics Contributor License Agreement (CLA) action https://docs.ultralytics.com/help/CLA
# This workflow automatically requests Pull Requests (PR) authors to sign the Ultralytics CLA before PRs can be merged # This workflow automatically requests Pull Requests (PR) authors to sign the Ultralytics CLA before PRs can be merged

View file

@ -1,4 +1,5 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# Builds ultralytics/ultralytics:latest images on DockerHub https://hub.docker.com/r/ultralytics # Builds ultralytics/ultralytics:latest images on DockerHub https://hub.docker.com/r/ultralytics
name: Publish Docker Images name: Publish Docker Images

View file

@ -1,4 +1,5 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# Test and publish docs to https://docs.ultralytics.com # Test and publish docs to https://docs.ultralytics.com
# Ignores the following Docs rules to match Google-style docstrings: # Ignores the following Docs rules to match Google-style docstrings:
# D100: Missing docstring in public module # D100: Missing docstring in public module

View file

@ -1,4 +1,5 @@
# Ultralytics 🚀 - AGPL-3.0 License https://ultralytics.com/license # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# Ultralytics Actions https://github.com/ultralytics/actions # Ultralytics Actions https://github.com/ultralytics/actions
# This workflow automatically formats code and documentation in PRs to official Ultralytics standards # This workflow automatically formats code and documentation in PRs to official Ultralytics standards

View file

@ -1,4 +1,5 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# Continuous Integration (CI) GitHub Actions tests broken link checker using https://github.com/lycheeverse/lychee # Continuous Integration (CI) GitHub Actions tests broken link checker using https://github.com/lycheeverse/lychee
# Ignores the following status codes to reduce false positives: # Ignores the following status codes to reduce false positives:
# - 401(Vimeo, 'unauthorized') # - 401(Vimeo, 'unauthorized')

View file

@ -1,4 +1,5 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# Automatically merges repository 'main' branch into all open PRs to keep them up-to-date # Automatically merges repository 'main' branch into all open PRs to keep them up-to-date
# Action runs on updates to main branch so when one PR merges to main all others update # Action runs on updates to main branch so when one PR merges to main all others update

View file

@ -1,4 +1,5 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# Publish pip package to PyPI https://pypi.org/project/ultralytics/ # Publish pip package to PyPI https://pypi.org/project/ultralytics/
name: Publish to PyPI name: Publish to PyPI

View file

@ -1,4 +1,4 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
name: Close stale issues name: Close stale issues
on: on:

View file

@ -1,3 +1,5 @@
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
[package] [package]
name = "YOLO-ONNXRuntime-Rust" name = "YOLO-ONNXRuntime-Rust"
version = "0.1.0" version = "0.1.0"

View file

@ -1,4 +1,4 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
[package] [package]
name = "yolov8-rs" name = "yolov8-rs"

View file

@ -1,4 +1,4 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# Configuration file for building the Ultralytics YOLO documentation site using MkDocs. # Configuration file for building the Ultralytics YOLO documentation site using MkDocs.
# Provides settings to control site metadata, customize the appearance using the # Provides settings to control site metadata, customize the appearance using the

View file

@ -1,4 +1,4 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# Overview: # Overview:
# This pyproject.toml file manages the build, packaging, and distribution of the Ultralytics library. # This pyproject.toml file manages the build, packaging, and distribution of the Ultralytics library.

View file

@ -1,4 +1,5 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# Argoverse-HD dataset (ring-front-center camera) https://www.cs.cmu.edu/~mengtial/proj/streaming/ by Argo AI # Argoverse-HD dataset (ring-front-center camera) https://www.cs.cmu.edu/~mengtial/proj/streaming/ by Argo AI
# Documentation: https://docs.ultralytics.com/datasets/detect/argoverse/ # Documentation: https://docs.ultralytics.com/datasets/detect/argoverse/
# Example usage: yolo train data=Argoverse.yaml # Example usage: yolo train data=Argoverse.yaml

View file

@ -1,4 +1,5 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# DOTA 1.5 dataset https://captain-whu.github.io/DOTA/index.html for object detection in aerial images by Wuhan University # DOTA 1.5 dataset https://captain-whu.github.io/DOTA/index.html for object detection in aerial images by Wuhan University
# Documentation: https://docs.ultralytics.com/datasets/obb/dota-v2/ # Documentation: https://docs.ultralytics.com/datasets/obb/dota-v2/
# Example usage: yolo train model=yolov8n-obb.pt data=DOTAv1.5.yaml # Example usage: yolo train model=yolov8n-obb.pt data=DOTAv1.5.yaml

View file

@ -1,4 +1,5 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# DOTA 1.0 dataset https://captain-whu.github.io/DOTA/index.html for object detection in aerial images by Wuhan University # DOTA 1.0 dataset https://captain-whu.github.io/DOTA/index.html for object detection in aerial images by Wuhan University
# Documentation: https://docs.ultralytics.com/datasets/obb/dota-v2/ # Documentation: https://docs.ultralytics.com/datasets/obb/dota-v2/
# Example usage: yolo train model=yolov8n-obb.pt data=DOTAv1.yaml # Example usage: yolo train model=yolov8n-obb.pt data=DOTAv1.yaml

View file

@ -1,4 +1,5 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# Global Wheat 2020 dataset https://www.global-wheat.com/ by University of Saskatchewan # Global Wheat 2020 dataset https://www.global-wheat.com/ by University of Saskatchewan
# Documentation: https://docs.ultralytics.com/datasets/detect/globalwheat2020/ # Documentation: https://docs.ultralytics.com/datasets/detect/globalwheat2020/
# Example usage: yolo train data=GlobalWheat2020.yaml # Example usage: yolo train data=GlobalWheat2020.yaml

View file

@ -1,4 +1,5 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# ImageNet-1k dataset https://www.image-net.org/index.php by Stanford University # ImageNet-1k dataset https://www.image-net.org/index.php by Stanford University
# Simplified class names from https://github.com/anishathalye/imagenet-simple-labels # Simplified class names from https://github.com/anishathalye/imagenet-simple-labels
# Documentation: https://docs.ultralytics.com/datasets/classify/imagenet/ # Documentation: https://docs.ultralytics.com/datasets/classify/imagenet/

View file

@ -1,4 +1,5 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# Objects365 dataset https://www.objects365.org/ by Megvii # Objects365 dataset https://www.objects365.org/ by Megvii
# Documentation: https://docs.ultralytics.com/datasets/detect/objects365/ # Documentation: https://docs.ultralytics.com/datasets/detect/objects365/
# Example usage: yolo train data=Objects365.yaml # Example usage: yolo train data=Objects365.yaml

View file

@ -1,4 +1,5 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# SKU-110K retail items dataset https://github.com/eg4000/SKU110K_CVPR19 by Trax Retail # SKU-110K retail items dataset https://github.com/eg4000/SKU110K_CVPR19 by Trax Retail
# Documentation: https://docs.ultralytics.com/datasets/detect/sku-110k/ # Documentation: https://docs.ultralytics.com/datasets/detect/sku-110k/
# Example usage: yolo train data=SKU-110K.yaml # Example usage: yolo train data=SKU-110K.yaml

View file

@ -1,4 +1,5 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# PASCAL VOC dataset http://host.robots.ox.ac.uk/pascal/VOC by University of Oxford # PASCAL VOC dataset http://host.robots.ox.ac.uk/pascal/VOC by University of Oxford
# Documentation: # Documentation: https://docs.ultralytics.com/datasets/detect/voc/ # Documentation: # Documentation: https://docs.ultralytics.com/datasets/detect/voc/
# Example usage: yolo train data=VOC.yaml # Example usage: yolo train data=VOC.yaml

View file

@ -1,4 +1,5 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# VisDrone2019-DET dataset https://github.com/VisDrone/VisDrone-Dataset by Tianjin University # VisDrone2019-DET dataset https://github.com/VisDrone/VisDrone-Dataset by Tianjin University
# Documentation: https://docs.ultralytics.com/datasets/detect/visdrone/ # Documentation: https://docs.ultralytics.com/datasets/detect/visdrone/
# Example usage: yolo train data=VisDrone.yaml # Example usage: yolo train data=VisDrone.yaml

View file

@ -1,4 +1,5 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# African-wildlife dataset by Ultralytics # African-wildlife dataset by Ultralytics
# Documentation: https://docs.ultralytics.com/datasets/detect/african-wildlife/ # Documentation: https://docs.ultralytics.com/datasets/detect/african-wildlife/
# Example usage: yolo train data=african-wildlife.yaml # Example usage: yolo train data=african-wildlife.yaml

View file

@ -1,4 +1,5 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# Brain-tumor dataset by Ultralytics # Brain-tumor dataset by Ultralytics
# Documentation: https://docs.ultralytics.com/datasets/detect/brain-tumor/ # Documentation: https://docs.ultralytics.com/datasets/detect/brain-tumor/
# Example usage: yolo train data=brain-tumor.yaml # Example usage: yolo train data=brain-tumor.yaml

View file

@ -1,4 +1,5 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# Carparts-seg dataset by Ultralytics # Carparts-seg dataset by Ultralytics
# Documentation: https://docs.ultralytics.com/datasets/segment/carparts-seg/ # Documentation: https://docs.ultralytics.com/datasets/segment/carparts-seg/
# Example usage: yolo train data=carparts-seg.yaml # Example usage: yolo train data=carparts-seg.yaml

View file

@ -1,4 +1,5 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# COCO 2017 Keypoints dataset https://cocodataset.org by Microsoft # COCO 2017 Keypoints dataset https://cocodataset.org by Microsoft
# Documentation: https://docs.ultralytics.com/datasets/pose/coco/ # Documentation: https://docs.ultralytics.com/datasets/pose/coco/
# Example usage: yolo train data=coco-pose.yaml # Example usage: yolo train data=coco-pose.yaml

View file

@ -1,4 +1,5 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# COCO 2017 dataset https://cocodataset.org by Microsoft # COCO 2017 dataset https://cocodataset.org by Microsoft
# Documentation: https://docs.ultralytics.com/datasets/detect/coco/ # Documentation: https://docs.ultralytics.com/datasets/detect/coco/
# Example usage: yolo train data=coco.yaml # Example usage: yolo train data=coco.yaml

View file

@ -1,4 +1,5 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# COCO128-seg dataset https://www.kaggle.com/datasets/ultralytics/coco128 (first 128 images from COCO train2017) by Ultralytics # COCO128-seg dataset https://www.kaggle.com/datasets/ultralytics/coco128 (first 128 images from COCO train2017) by Ultralytics
# Documentation: https://docs.ultralytics.com/datasets/segment/coco/ # Documentation: https://docs.ultralytics.com/datasets/segment/coco/
# Example usage: yolo train data=coco128.yaml # Example usage: yolo train data=coco128.yaml

View file

@ -1,4 +1,5 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# COCO128 dataset https://www.kaggle.com/datasets/ultralytics/coco128 (first 128 images from COCO train2017) by Ultralytics # COCO128 dataset https://www.kaggle.com/datasets/ultralytics/coco128 (first 128 images from COCO train2017) by Ultralytics
# Documentation: https://docs.ultralytics.com/datasets/detect/coco/ # Documentation: https://docs.ultralytics.com/datasets/detect/coco/
# Example usage: yolo train data=coco128.yaml # Example usage: yolo train data=coco128.yaml

View file

@ -1,4 +1,5 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# COCO8-pose dataset (first 8 images from COCO train2017) by Ultralytics # COCO8-pose dataset (first 8 images from COCO train2017) by Ultralytics
# Documentation: https://docs.ultralytics.com/datasets/pose/coco8-pose/ # Documentation: https://docs.ultralytics.com/datasets/pose/coco8-pose/
# Example usage: yolo train data=coco8-pose.yaml # Example usage: yolo train data=coco8-pose.yaml

View file

@ -1,4 +1,5 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# COCO8-seg dataset (first 8 images from COCO train2017) by Ultralytics # COCO8-seg dataset (first 8 images from COCO train2017) by Ultralytics
# Documentation: https://docs.ultralytics.com/datasets/segment/coco8-seg/ # Documentation: https://docs.ultralytics.com/datasets/segment/coco8-seg/
# Example usage: yolo train data=coco8-seg.yaml # Example usage: yolo train data=coco8-seg.yaml

View file

@ -1,4 +1,5 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# COCO8 dataset (first 8 images from COCO train2017) by Ultralytics # COCO8 dataset (first 8 images from COCO train2017) by Ultralytics
# Documentation: https://docs.ultralytics.com/datasets/detect/coco8/ # Documentation: https://docs.ultralytics.com/datasets/detect/coco8/
# Example usage: yolo train data=coco8.yaml # Example usage: yolo train data=coco8.yaml

View file

@ -1,4 +1,5 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# Crack-seg dataset by Ultralytics # Crack-seg dataset by Ultralytics
# Documentation: https://docs.ultralytics.com/datasets/segment/crack-seg/ # Documentation: https://docs.ultralytics.com/datasets/segment/crack-seg/
# Example usage: yolo train data=crack-seg.yaml # Example usage: yolo train data=crack-seg.yaml

View file

@ -1,4 +1,5 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# Dogs dataset http://vision.stanford.edu/aditya86/ImageNetDogs/ by Stanford # Dogs dataset http://vision.stanford.edu/aditya86/ImageNetDogs/ by Stanford
# Documentation: https://docs.ultralytics.com/datasets/pose/dog-pose/ # Documentation: https://docs.ultralytics.com/datasets/pose/dog-pose/
# Example usage: yolo train data=dog-pose.yaml # Example usage: yolo train data=dog-pose.yaml

View file

@ -1,4 +1,5 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# DOTA8 dataset 8 images from split DOTAv1 dataset by Ultralytics # DOTA8 dataset 8 images from split DOTAv1 dataset by Ultralytics
# Documentation: https://docs.ultralytics.com/datasets/obb/dota8/ # Documentation: https://docs.ultralytics.com/datasets/obb/dota8/
# Example usage: yolo train model=yolov8n-obb.pt data=dota8.yaml # Example usage: yolo train model=yolov8n-obb.pt data=dota8.yaml

View file

@ -1,4 +1,5 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# Hand Keypoints dataset by Ultralytics # Hand Keypoints dataset by Ultralytics
# Documentation: https://docs.ultralytics.com/datasets/pose/hand-keypoints/ # Documentation: https://docs.ultralytics.com/datasets/pose/hand-keypoints/
# Example usage: yolo train data=hand-keypoints.yaml # Example usage: yolo train data=hand-keypoints.yaml

View file

@ -1,4 +1,5 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# LVIS dataset http://www.lvisdataset.org by Facebook AI Research. # LVIS dataset http://www.lvisdataset.org by Facebook AI Research.
# Documentation: https://docs.ultralytics.com/datasets/detect/lvis/ # Documentation: https://docs.ultralytics.com/datasets/detect/lvis/
# Example usage: yolo train data=lvis.yaml # Example usage: yolo train data=lvis.yaml

View file

@ -1,4 +1,5 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# Medical-pills dataset by Ultralytics # Medical-pills dataset by Ultralytics
# Documentation: https://docs.ultralytics.com/datasets/detect/medical-pills/ # Documentation: https://docs.ultralytics.com/datasets/detect/medical-pills/
# Example usage: yolo train data=medical-pills.yaml # Example usage: yolo train data=medical-pills.yaml

View file

@ -1,4 +1,5 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# Open Images v7 dataset https://storage.googleapis.com/openimages/web/index.html by Google # Open Images v7 dataset https://storage.googleapis.com/openimages/web/index.html by Google
# Documentation: https://docs.ultralytics.com/datasets/detect/open-images-v7/ # Documentation: https://docs.ultralytics.com/datasets/detect/open-images-v7/
# Example usage: yolo train data=open-images-v7.yaml # Example usage: yolo train data=open-images-v7.yaml

View file

@ -1,4 +1,5 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# Package-seg dataset by Ultralytics # Package-seg dataset by Ultralytics
# Documentation: https://docs.ultralytics.com/datasets/segment/package-seg/ # Documentation: https://docs.ultralytics.com/datasets/segment/package-seg/
# Example usage: yolo train data=package-seg.yaml # Example usage: yolo train data=package-seg.yaml

View file

@ -1,4 +1,5 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# Signature dataset by Ultralytics # Signature dataset by Ultralytics
# Documentation: https://docs.ultralytics.com/datasets/detect/signature/ # Documentation: https://docs.ultralytics.com/datasets/detect/signature/
# Example usage: yolo train data=signature.yaml # Example usage: yolo train data=signature.yaml

View file

@ -1,4 +1,5 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# Tiger Pose dataset by Ultralytics # Tiger Pose dataset by Ultralytics
# Documentation: https://docs.ultralytics.com/datasets/pose/tiger-pose/ # Documentation: https://docs.ultralytics.com/datasets/pose/tiger-pose/
# Example usage: yolo train data=tiger-pose.yaml # Example usage: yolo train data=tiger-pose.yaml

View file

@ -1,4 +1,5 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# DIUx xView 2018 Challenge https://challenge.xviewdataset.org by U.S. National Geospatial-Intelligence Agency (NGA) # DIUx xView 2018 Challenge https://challenge.xviewdataset.org by U.S. National Geospatial-Intelligence Agency (NGA)
# -------- DOWNLOAD DATA MANUALLY and jar xf val_images.zip to 'datasets/xView' before running train command! -------- # -------- DOWNLOAD DATA MANUALLY and jar xf val_images.zip to 'datasets/xView' before running train command! --------
# Documentation: https://docs.ultralytics.com/datasets/detect/xview/ # Documentation: https://docs.ultralytics.com/datasets/detect/xview/

View file

@ -1,5 +1,7 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# Default training settings and hyperparameters for medium-augmentation COCO training
# Global configuration YAML with settings and hyperparameters for YOLO training, validation, prediction and export
# For documentation see https://docs.ultralytics.com/usage/cfg/
task: detect # (str) YOLO task, i.e. detect, segment, classify, pose, obb task: detect # (str) YOLO task, i.e. detect, segment, classify, pose, obb
mode: train # (str) YOLO mode, i.e. train, val, predict, export, track, benchmark mode: train # (str) YOLO mode, i.e. train, val, predict, export, track, benchmark

View file

@ -1,5 +1,8 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# YOLO11-cls image classification model. For Usage examples see https://docs.ultralytics.com/tasks/classify
# Ultralytics YOLO11-cls image classification model with ResNet18 backbone
# Model docs: https://docs.ultralytics.com/models/yolo11
# Task docs: https://docs.ultralytics.com/tasks/classify
# Parameters # Parameters
nc: 10 # number of classes nc: 10 # number of classes
@ -11,7 +14,7 @@ scales: # model compound scaling constants, i.e. 'model=yolo11n-cls.yaml' will c
l: [1.00, 1.00, 1024] l: [1.00, 1.00, 1024]
x: [1.00, 1.25, 1024] x: [1.00, 1.25, 1024]
# YOLO11n backbone # ResNet18 backbone
backbone: backbone:
# [from, repeats, module, args] # [from, repeats, module, args]
- [-1, 1, TorchVision, [512, "resnet18", "DEFAULT", True, 2]] # truncate two layers from the end - [-1, 1, TorchVision, [512, "resnet18", "DEFAULT", True, 2]] # truncate two layers from the end

View file

@ -1,5 +1,8 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# YOLO11-cls image classification model. For Usage examples see https://docs.ultralytics.com/tasks/classify
# Ultralytics YOLO11-cls image classification model
# Model docs: https://docs.ultralytics.com/models/yolo11
# Task docs: https://docs.ultralytics.com/tasks/classify
# Parameters # Parameters
nc: 80 # number of classes nc: 80 # number of classes

View file

@ -1,5 +1,8 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# YOLO11 Oriented Bounding Boxes (OBB) model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/obb
# Ultralytics YOLO11-obb Oriented Bounding Boxes (OBB) model with P3/8 - P5/32 outputs
# Model docs: https://docs.ultralytics.com/models/yolo11
# Task docs: https://docs.ultralytics.com/tasks/obb
# Parameters # Parameters
nc: 80 # number of classes nc: 80 # number of classes

View file

@ -1,5 +1,8 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# YOLO11-pose keypoints/pose estimation model. For Usage examples see https://docs.ultralytics.com/tasks/pose
# Ultralytics YOLO11-pose keypoints/pose estimation model with P3/8 - P5/32 outputs
# Model docs: https://docs.ultralytics.com/models/yolo11
# Task docs: https://docs.ultralytics.com/tasks/pose
# Parameters # Parameters
nc: 80 # number of classes nc: 80 # number of classes

View file

@ -1,5 +1,8 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# YOLO11-seg instance segmentation model. For Usage examples see https://docs.ultralytics.com/tasks/segment
# Ultralytics YOLO11-seg instance segmentation model with P3/8 - P5/32 outputs
# Model docs: https://docs.ultralytics.com/models/yolo11
# Task docs: https://docs.ultralytics.com/tasks/segment
# Parameters # Parameters
nc: 80 # number of classes nc: 80 # number of classes

View file

@ -1,5 +1,8 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# YOLO11 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect
# Ultralytics YOLO11 object detection model with P3/8 - P5/32 outputs
# Model docs: https://docs.ultralytics.com/models/yolo11
# Task docs: https://docs.ultralytics.com/tasks/detect
# Parameters # Parameters
nc: 80 # number of classes nc: 80 # number of classes

View file

@ -1,5 +1,8 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# RT-DETR-l object detection model with P3-P5 outputs. For details see https://docs.ultralytics.com/models/rtdetr
# Ultralytics RT-DETR-l hybrid object detection model with P3/8 - P5/32 outputs
# Model docs: https://docs.ultralytics.com/models/rtdetr
# Task docs: https://docs.ultralytics.com/tasks/detect
# Parameters # Parameters
nc: 80 # number of classes nc: 80 # number of classes

View file

@ -1,5 +1,8 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# RT-DETR-ResNet101 object detection model with P3-P5 outputs.
# Ultralytics RT-DETR-ResNet101 hybrid object detection model with P3/8 - P5/32 outputs
# Model docs: https://docs.ultralytics.com/models/rtdetr
# Task docs: https://docs.ultralytics.com/tasks/detect
# Parameters # Parameters
nc: 80 # number of classes nc: 80 # number of classes

View file

@ -1,5 +1,8 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# RT-DETR-ResNet50 object detection model with P3-P5 outputs.
# Ultralytics RT-DETR-ResNet50 hybrid object detection model with P3/8 - P5/32 outputs
# Model docs: https://docs.ultralytics.com/models/rtdetr
# Task docs: https://docs.ultralytics.com/tasks/detect
# Parameters # Parameters
nc: 80 # number of classes nc: 80 # number of classes

View file

@ -1,5 +1,8 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# RT-DETR-x object detection model with P3-P5 outputs. For details see https://docs.ultralytics.com/models/rtdetr
# Ultralytics RT-DETR-x hybrid object detection model with P3/8 - P5/32 outputs
# Model docs: https://docs.ultralytics.com/models/rtdetr
# Task docs: https://docs.ultralytics.com/tasks/detect
# Parameters # Parameters
nc: 80 # number of classes nc: 80 # number of classes

View file

@ -1,5 +1,8 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# YOLOv10 object detection model. For Usage examples see https://docs.ultralytics.com/tasks/detect
# YOLOv10b object detection model with P3/8 - P5/32 outputs
# Model docs: https://docs.ultralytics.com/models/yolov10
# Task docs: https://docs.ultralytics.com/tasks/detect
# Parameters # Parameters
nc: 80 # number of classes nc: 80 # number of classes

View file

@ -1,5 +1,8 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# YOLOv10 object detection model. For Usage examples see https://docs.ultralytics.com/tasks/detect
# YOLOv10l object detection model with P3/8 - P5/32 outputs
# Model docs: https://docs.ultralytics.com/models/yolov10
# Task docs: https://docs.ultralytics.com/tasks/detect
# Parameters # Parameters
nc: 80 # number of classes nc: 80 # number of classes

View file

@ -1,5 +1,8 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# YOLOv10 object detection model. For Usage examples see https://docs.ultralytics.com/tasks/detect
# YOLOv10m object detection model with P3/8 - P5/32 outputs
# Model docs: https://docs.ultralytics.com/models/yolov10
# Task docs: https://docs.ultralytics.com/tasks/detect
# Parameters # Parameters
nc: 80 # number of classes nc: 80 # number of classes

View file

@ -1,5 +1,8 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# YOLOv10 object detection model. For Usage examples see https://docs.ultralytics.com/tasks/detect
# YOLOv10n object detection model with P3/8 - P5/32 outputs
# Model docs: https://docs.ultralytics.com/models/yolov10
# Task docs: https://docs.ultralytics.com/tasks/detect
# Parameters # Parameters
nc: 80 # number of classes nc: 80 # number of classes

View file

@ -1,5 +1,8 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# YOLOv10 object detection model. For Usage examples see https://docs.ultralytics.com/tasks/detect
# YOLOv10s object detection model with P3/8 - P5/32 outputs
# Model docs: https://docs.ultralytics.com/models/yolov10
# Task docs: https://docs.ultralytics.com/tasks/detect
# Parameters # Parameters
nc: 80 # number of classes nc: 80 # number of classes

View file

@ -1,5 +1,8 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# YOLOv10 object detection model. For Usage examples see https://docs.ultralytics.com/tasks/detect
# YOLOv10x object detection model with P3/8 - P5/32 outputs
# Model docs: https://docs.ultralytics.com/models/yolov10
# Task docs: https://docs.ultralytics.com/tasks/detect
# Parameters # Parameters
nc: 80 # number of classes nc: 80 # number of classes

View file

@ -1,5 +1,8 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# YOLOv3-SPP object detection model with P3-P5 outputs. For details see https://docs.ultralytics.com/models/yolov3
# Ultralytics YOLOv3-SPP object detection model with P3/8 - P5/32 outputs
# Model docs: https://docs.ultralytics.com/models/yolov3
# Task docs: https://docs.ultralytics.com/tasks/detect
# Parameters # Parameters
nc: 80 # number of classes nc: 80 # number of classes

View file

@ -1,5 +1,8 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# YOLOv3-tiny object detection model with P4-P5 outputs. For details see https://docs.ultralytics.com/models/yolov3
# Ultralytics YOLOv3-tiiny object detection model with P4/16 - P5/32 outputs
# Model docs: https://docs.ultralytics.com/models/yolov3
# Task docs: https://docs.ultralytics.com/tasks/detect
# Parameters # Parameters
nc: 80 # number of classes nc: 80 # number of classes

View file

@ -1,5 +1,8 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# YOLOv3 object detection model with P3-P5 outputs. For details see https://docs.ultralytics.com/models/yolov3
# Ultralytics YOLOv3 object detection model with P3/8 - P5/32 outputs
# Model docs: https://docs.ultralytics.com/models/yolov3
# Task docs: https://docs.ultralytics.com/tasks/detect
# Parameters # Parameters
nc: 80 # number of classes nc: 80 # number of classes

View file

@ -1,5 +1,8 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# YOLOv5 object detection model with P3-P6 outputs. For details see https://docs.ultralytics.com/models/yolov5
# Ultralytics YOLOv5 object detection model with P3/8 - P6/64 outputs
# Model docs: https://docs.ultralytics.com/models/yolov5
# Task docs: https://docs.ultralytics.com/tasks/detect
# Parameters # Parameters
nc: 80 # number of classes nc: 80 # number of classes

View file

@ -1,5 +1,8 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# YOLOv5 object detection model with P3-P5 outputs. For details see https://docs.ultralytics.com/models/yolov5
# Ultralytics YOLOv5 object detection model with P3/8 - P5/32 outputs
# Model docs: https://docs.ultralytics.com/models/yolov5
# Task docs: https://docs.ultralytics.com/tasks/detect
# Parameters # Parameters
nc: 80 # number of classes nc: 80 # number of classes

View file

@ -1,5 +1,8 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# YOLOv6 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/models/yolov6
# Meituan YOLOv6 object detection model with P3/8 - P5/32 outputs
# Model docs: https://docs.ultralytics.com/models/yolov6
# Task docs: https://docs.ultralytics.com/tasks/detect
# Parameters # Parameters
nc: 80 # number of classes nc: 80 # number of classes

View file

@ -1,5 +1,8 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# YOLOv8-cls image classification model. For Usage examples see https://docs.ultralytics.com/tasks/classify
# Ultralytics YOLOv8-cls image classification model with ResNet101 backbone
# Model docs: https://docs.ultralytics.com/models/yolov8
# Task docs: https://docs.ultralytics.com/tasks/classify
# Parameters # Parameters
nc: 1000 # number of classes nc: 1000 # number of classes

View file

@ -1,5 +1,8 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# YOLOv8-cls image classification model. For Usage examples see https://docs.ultralytics.com/tasks/classify
# Ultralytics YOLOv8-cls image classification model with ResNet50 backbone
# Model docs: https://docs.ultralytics.com/models/yolov8
# Task docs: https://docs.ultralytics.com/tasks/classify
# Parameters # Parameters
nc: 1000 # number of classes nc: 1000 # number of classes

View file

@ -1,5 +1,8 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# YOLOv8-cls image classification model. For Usage examples see https://docs.ultralytics.com/tasks/classify
# Ultralytics YOLOv8-cls image classification model with YOLO backbone
# Model docs: https://docs.ultralytics.com/models/yolov8
# Task docs: https://docs.ultralytics.com/tasks/classify
# Parameters # Parameters
nc: 1000 # number of classes nc: 1000 # number of classes

View file

@ -1,5 +1,9 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# YOLOv8 object detection model with P2-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect
# Ultralytics YOLOv8 object detection model with P2/4 - P5/32 outputs
# Model docs: https://docs.ultralytics.com/models/yolov8
# Task docs: https://docs.ultralytics.com/tasks/detect
# Employs Ghost convolutions and modules proposed in Huawei's GhostNet in https://arxiv.org/abs/1911.11907v2
# Parameters # Parameters
nc: 80 # number of classes nc: 80 # number of classes

View file

@ -1,5 +1,9 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# YOLOv8 object detection model with P3-P6 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect
# Ultralytics YOLOv8 object detection model with P3/8 - P6/64 outputs
# Model docs: https://docs.ultralytics.com/models/yolov8
# Task docs: https://docs.ultralytics.com/tasks/detect
# Employs Ghost convolutions and modules proposed in Huawei's GhostNet in https://arxiv.org/abs/1911.11907v2
# Parameters # Parameters
nc: 80 # number of classes nc: 80 # number of classes

View file

@ -1,5 +1,8 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect
# Ultralytics YOLOv8 object detection model with P3/8 - P5/32 outputs
# Model docs: https://docs.ultralytics.com/models/yolov8
# Task docs: https://docs.ultralytics.com/tasks/detect
# Employs Ghost convolutions and modules proposed in Huawei's GhostNet in https://arxiv.org/abs/1911.11907v2 # Employs Ghost convolutions and modules proposed in Huawei's GhostNet in https://arxiv.org/abs/1911.11907v2
# Parameters # Parameters

View file

@ -1,5 +1,8 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# YOLOv8 Oriented Bounding Boxes (OBB) model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect
# Ultralytics YOLOv8-obb Oriented Bounding Boxes (OBB) model with P3/8 - P5/32 outputs
# Model docs: https://docs.ultralytics.com/models/yolov8
# Task docs: https://docs.ultralytics.com/tasks/obb
# Parameters # Parameters
nc: 80 # number of classes nc: 80 # number of classes

View file

@ -1,5 +1,8 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# YOLOv8 object detection model with P2-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect
# Ultralytics YOLOv8 object detection model with P2/4 - P5/32 outputs
# Model docs: https://docs.ultralytics.com/models/yolov8
# Task docs: https://docs.ultralytics.com/tasks/detect
# Parameters # Parameters
nc: 80 # number of classes nc: 80 # number of classes

View file

@ -1,5 +1,8 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# YOLOv8 object detection model with P3-P6 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect
# Ultralytics YOLOv8 object detection model with P3/8 - P6/64 outputs
# Model docs: https://docs.ultralytics.com/models/yolov8
# Task docs: https://docs.ultralytics.com/tasks/detect
# Parameters # Parameters
nc: 80 # number of classes nc: 80 # number of classes

View file

@ -1,5 +1,8 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# YOLOv8-pose-p6 keypoints/pose estimation model. For Usage examples see https://docs.ultralytics.com/tasks/pose
# Ultralytics YOLOv8-pose keypoints/pose estimation model with P3/8 - P6/64 outputs
# Model docs: https://docs.ultralytics.com/models/yolov8
# Task docs: https://docs.ultralytics.com/tasks/pose
# Parameters # Parameters
nc: 1 # number of classes nc: 1 # number of classes

View file

@ -1,5 +1,8 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# YOLOv8-pose keypoints/pose estimation model. For Usage examples see https://docs.ultralytics.com/tasks/pose
# Ultralytics YOLOv8-pose keypoints/pose estimation model with P3/8 - P5/32 outputs
# Model docs: https://docs.ultralytics.com/models/yolov8
# Task docs: https://docs.ultralytics.com/tasks/pose
# Parameters # Parameters
nc: 1 # number of classes nc: 1 # number of classes

View file

@ -1,5 +1,8 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect
# Ultralytics YOLOv8-RTDETR hybrid object detection model with P3/8 - P5/32 outputs
# Model docs: https://docs.ultralytics.com/models/rtdetr
# Task docs: https://docs.ultralytics.com/tasks/detect
# Parameters # Parameters
nc: 80 # number of classes nc: 80 # number of classes

View file

@ -1,5 +1,8 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# YOLOv8-seg-p6 instance segmentation model. For Usage examples see https://docs.ultralytics.com/tasks/segment
# Ultralytics YOLOv8-seg instance segmentation model with P3/8 - P6/64 outputs
# Model docs: https://docs.ultralytics.com/models/yolov8
# Task docs: https://docs.ultralytics.com/tasks/segment
# Parameters # Parameters
nc: 80 # number of classes nc: 80 # number of classes

View file

@ -1,5 +1,8 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# YOLOv8-seg instance segmentation model. For Usage examples see https://docs.ultralytics.com/tasks/segment
# Ultralytics YOLOv8-seg instance segmentation model with P3/8 - P5/32 outputs
# Model docs: https://docs.ultralytics.com/models/yolov8
# Task docs: https://docs.ultralytics.com/tasks/segment
# Parameters # Parameters
nc: 80 # number of classes nc: 80 # number of classes

View file

@ -1,5 +1,8 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# YOLOv8-World object detection model with P3-P5 outputs. For details see https://docs.ultralytics.com/tasks/detect
# Ultralytics YOLOv8-World hybrid object detection model with P3/8 - P5/32 outputs
# Model docs: https://docs.ultralytics.com/models/yolo-world
# Task docs: https://docs.ultralytics.com/tasks/detect
# Parameters # Parameters
nc: 80 # number of classes nc: 80 # number of classes

View file

@ -1,5 +1,8 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# YOLOv8-World-v2 object detection model with P3-P5 outputs. For details see https://docs.ultralytics.com/tasks/detect
# Ultralytics YOLOv8-Worldv2 hybrid object detection model with P3/8 - P5/32 outputs
# Model docs: https://docs.ultralytics.com/models/yolo-world
# Task docs: https://docs.ultralytics.com/tasks/detect
# Parameters # Parameters
nc: 80 # number of classes nc: 80 # number of classes

View file

@ -1,5 +1,8 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect
# Ultralytics YOLOv8 object detection model with P3/8 - P5/32 outputs
# Model docs: https://docs.ultralytics.com/models/yolov8
# Task docs: https://docs.ultralytics.com/tasks/detect
# Parameters # Parameters
nc: 80 # number of classes nc: 80 # number of classes

View file

@ -1,5 +1,8 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# YOLOv9c-seg instance segmentation model. For Usage examples see https://docs.ultralytics.com/models/yolov9
# YOLOv9c-seg instance segmentation model with P3/8 - P5/32 outputs
# Model docs: https://docs.ultralytics.com/models/yolov9
# Task docs: https://docs.ultralytics.com/tasks/segment
# 654 layers, 27897120 parameters, 159.4 GFLOPs # 654 layers, 27897120 parameters, 159.4 GFLOPs
# Parameters # Parameters

View file

@ -1,5 +1,8 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# YOLOv9c object detection model. For Usage examples see https://docs.ultralytics.com/models/yolov9
# YOLOv9c object detection model with P3/8 - P5/32 outputs
# Model docs: https://docs.ultralytics.com/models/yolov9
# Task docs: https://docs.ultralytics.com/tasks/detect
# 618 layers, 25590912 parameters, 104.0 GFLOPs # 618 layers, 25590912 parameters, 104.0 GFLOPs
# Parameters # Parameters

View file

@ -1,5 +1,8 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# YOLOv9e-seg instance segmentation model. For Usage examples see https://docs.ultralytics.com/models/yolov9
# YOLOv9e-seg instance segmentation model with P3/8 - P5/32 outputs
# Model docs: https://docs.ultralytics.com/models/yolov9
# Task docs: https://docs.ultralytics.com/tasks/segment
# 1261 layers, 60512800 parameters, 248.4 GFLOPs # 1261 layers, 60512800 parameters, 248.4 GFLOPs
# Parameters # Parameters

View file

@ -1,5 +1,8 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# YOLOv9e object detection model. For Usage examples see https://docs.ultralytics.com/models/yolov9
# YOLOv9e object detection model with P3/8 - P5/32 outputs
# Model docs: https://docs.ultralytics.com/models/yolov9
# Task docs: https://docs.ultralytics.com/tasks/detect
# 1225 layers, 58206592 parameters, 193.0 GFLOPs # 1225 layers, 58206592 parameters, 193.0 GFLOPs
# Parameters # Parameters

View file

@ -1,5 +1,8 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# YOLOv9m object detection model. For Usage examples see https://docs.ultralytics.com/models/yolov9
# YOLOv9m object detection model with P3/8 - P5/32 outputs
# Model docs: https://docs.ultralytics.com/models/yolov9
# Task docs: https://docs.ultralytics.com/tasks/detect
# 603 layers, 20216160 parameters, 77.9 GFLOPs # 603 layers, 20216160 parameters, 77.9 GFLOPs
# Parameters # Parameters

View file

@ -1,5 +1,8 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# YOLOv9s object detection model. For Usage examples see https://docs.ultralytics.com/models/yolov9
# YOLOv9s object detection model with P3/8 - P5/32 outputs
# Model docs: https://docs.ultralytics.com/models/yolov9
# Task docs: https://docs.ultralytics.com/tasks/detect
# 917 layers, 7318368 parameters, 27.6 GFLOPs # 917 layers, 7318368 parameters, 27.6 GFLOPs
# Parameters # Parameters

View file

@ -1,5 +1,8 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# YOLOv9t object detection model. For Usage examples see https://docs.ultralytics.com/models/yolov9
# YOLOv9t object detection model with P3/8 - P5/32 outputs
# Model docs: https://docs.ultralytics.com/models/yolov9
# Task docs: https://docs.ultralytics.com/tasks/detect
# 917 layers, 2128720 parameters, 8.5 GFLOPs # 917 layers, 2128720 parameters, 8.5 GFLOPs
# Parameters # Parameters

View file

@ -1,5 +1,7 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# Configuration for Ultralytics Solutions: https://docs.ultralytics.com/solutions/
# Global configuration YAML with settings and arguments for Ultralytics Solutions
# For documentation see https://docs.ultralytics.com/solutions/
# Object counting settings -------------------------------------------------------------------------------------------- # Object counting settings --------------------------------------------------------------------------------------------
region: # list[tuple[int, int]] object counting, queue or speed estimation region points. region: # list[tuple[int, int]] object counting, queue or speed estimation region points.

View file

@ -1,5 +1,8 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# Default YOLO tracker settings for BoT-SORT tracker https://github.com/NirAharon/BoT-SORT
# Default Ultralytics settings for BoT-SORT tracker when using mode="track"
# For documentation and examples see https://docs.ultralytics.com/modes/track/
# For BoT-SORT source code see https://github.com/NirAharon/BoT-SORT
tracker_type: botsort # tracker type, ['botsort', 'bytetrack'] tracker_type: botsort # tracker type, ['botsort', 'bytetrack']
track_high_thresh: 0.25 # threshold for the first association track_high_thresh: 0.25 # threshold for the first association

View file

@ -1,5 +1,8 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# Default YOLO tracker settings for ByteTrack tracker https://github.com/ifzhang/ByteTrack
# Default Ultralytics settings for ByteTrack tracker when using mode="track"
# For documentation and examples see https://docs.ultralytics.com/modes/track/
# For ByteTrack source code see https://github.com/ifzhang/ByteTrack
tracker_type: bytetrack # tracker type, ['botsort', 'bytetrack'] tracker_type: bytetrack # tracker type, ['botsort', 'bytetrack']
track_high_thresh: 0.25 # threshold for the first association track_high_thresh: 0.25 # threshold for the first association