Improve headers and comments in TOML/YAML files (#18698)

Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>
Co-authored-by: UltralyticsAssistant <web@ultralytics.com>
This commit is contained in:
Paula Derrenger 2025-01-15 19:33:16 +01:00 committed by GitHub
parent be819455af
commit 5a58950a7c
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
98 changed files with 339 additions and 148 deletions

View file

@ -1,4 +1,5 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# Argoverse-HD dataset (ring-front-center camera) https://www.cs.cmu.edu/~mengtial/proj/streaming/ by Argo AI
# Documentation: https://docs.ultralytics.com/datasets/detect/argoverse/
# Example usage: yolo train data=Argoverse.yaml

View file

@ -1,4 +1,5 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# DOTA 1.5 dataset https://captain-whu.github.io/DOTA/index.html for object detection in aerial images by Wuhan University
# Documentation: https://docs.ultralytics.com/datasets/obb/dota-v2/
# Example usage: yolo train model=yolov8n-obb.pt data=DOTAv1.5.yaml

View file

@ -1,4 +1,5 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# DOTA 1.0 dataset https://captain-whu.github.io/DOTA/index.html for object detection in aerial images by Wuhan University
# Documentation: https://docs.ultralytics.com/datasets/obb/dota-v2/
# Example usage: yolo train model=yolov8n-obb.pt data=DOTAv1.yaml

View file

@ -1,4 +1,5 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# Global Wheat 2020 dataset https://www.global-wheat.com/ by University of Saskatchewan
# Documentation: https://docs.ultralytics.com/datasets/detect/globalwheat2020/
# Example usage: yolo train data=GlobalWheat2020.yaml

View file

@ -1,4 +1,5 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# ImageNet-1k dataset https://www.image-net.org/index.php by Stanford University
# Simplified class names from https://github.com/anishathalye/imagenet-simple-labels
# Documentation: https://docs.ultralytics.com/datasets/classify/imagenet/

View file

@ -1,4 +1,5 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# Objects365 dataset https://www.objects365.org/ by Megvii
# Documentation: https://docs.ultralytics.com/datasets/detect/objects365/
# Example usage: yolo train data=Objects365.yaml

View file

@ -1,4 +1,5 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# SKU-110K retail items dataset https://github.com/eg4000/SKU110K_CVPR19 by Trax Retail
# Documentation: https://docs.ultralytics.com/datasets/detect/sku-110k/
# Example usage: yolo train data=SKU-110K.yaml

View file

@ -1,4 +1,5 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# PASCAL VOC dataset http://host.robots.ox.ac.uk/pascal/VOC by University of Oxford
# Documentation: # Documentation: https://docs.ultralytics.com/datasets/detect/voc/
# Example usage: yolo train data=VOC.yaml

View file

@ -1,4 +1,5 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# VisDrone2019-DET dataset https://github.com/VisDrone/VisDrone-Dataset by Tianjin University
# Documentation: https://docs.ultralytics.com/datasets/detect/visdrone/
# Example usage: yolo train data=VisDrone.yaml

View file

@ -1,4 +1,5 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# African-wildlife dataset by Ultralytics
# Documentation: https://docs.ultralytics.com/datasets/detect/african-wildlife/
# Example usage: yolo train data=african-wildlife.yaml

View file

@ -1,4 +1,5 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# Brain-tumor dataset by Ultralytics
# Documentation: https://docs.ultralytics.com/datasets/detect/brain-tumor/
# Example usage: yolo train data=brain-tumor.yaml

View file

@ -1,4 +1,5 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# Carparts-seg dataset by Ultralytics
# Documentation: https://docs.ultralytics.com/datasets/segment/carparts-seg/
# Example usage: yolo train data=carparts-seg.yaml

View file

@ -1,4 +1,5 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# COCO 2017 Keypoints dataset https://cocodataset.org by Microsoft
# Documentation: https://docs.ultralytics.com/datasets/pose/coco/
# Example usage: yolo train data=coco-pose.yaml

View file

@ -1,4 +1,5 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# COCO 2017 dataset https://cocodataset.org by Microsoft
# Documentation: https://docs.ultralytics.com/datasets/detect/coco/
# Example usage: yolo train data=coco.yaml

View file

@ -1,4 +1,5 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# COCO128-seg dataset https://www.kaggle.com/datasets/ultralytics/coco128 (first 128 images from COCO train2017) by Ultralytics
# Documentation: https://docs.ultralytics.com/datasets/segment/coco/
# Example usage: yolo train data=coco128.yaml

View file

@ -1,4 +1,5 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# COCO128 dataset https://www.kaggle.com/datasets/ultralytics/coco128 (first 128 images from COCO train2017) by Ultralytics
# Documentation: https://docs.ultralytics.com/datasets/detect/coco/
# Example usage: yolo train data=coco128.yaml

View file

@ -1,4 +1,5 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# COCO8-pose dataset (first 8 images from COCO train2017) by Ultralytics
# Documentation: https://docs.ultralytics.com/datasets/pose/coco8-pose/
# Example usage: yolo train data=coco8-pose.yaml

View file

@ -1,4 +1,5 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# COCO8-seg dataset (first 8 images from COCO train2017) by Ultralytics
# Documentation: https://docs.ultralytics.com/datasets/segment/coco8-seg/
# Example usage: yolo train data=coco8-seg.yaml

View file

@ -1,4 +1,5 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# COCO8 dataset (first 8 images from COCO train2017) by Ultralytics
# Documentation: https://docs.ultralytics.com/datasets/detect/coco8/
# Example usage: yolo train data=coco8.yaml

View file

@ -1,4 +1,5 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# Crack-seg dataset by Ultralytics
# Documentation: https://docs.ultralytics.com/datasets/segment/crack-seg/
# Example usage: yolo train data=crack-seg.yaml

View file

@ -1,4 +1,5 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# Dogs dataset http://vision.stanford.edu/aditya86/ImageNetDogs/ by Stanford
# Documentation: https://docs.ultralytics.com/datasets/pose/dog-pose/
# Example usage: yolo train data=dog-pose.yaml

View file

@ -1,4 +1,5 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# DOTA8 dataset 8 images from split DOTAv1 dataset by Ultralytics
# Documentation: https://docs.ultralytics.com/datasets/obb/dota8/
# Example usage: yolo train model=yolov8n-obb.pt data=dota8.yaml

View file

@ -1,4 +1,5 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# Hand Keypoints dataset by Ultralytics
# Documentation: https://docs.ultralytics.com/datasets/pose/hand-keypoints/
# Example usage: yolo train data=hand-keypoints.yaml

View file

@ -1,4 +1,5 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# LVIS dataset http://www.lvisdataset.org by Facebook AI Research.
# Documentation: https://docs.ultralytics.com/datasets/detect/lvis/
# Example usage: yolo train data=lvis.yaml

View file

@ -1,4 +1,5 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# Medical-pills dataset by Ultralytics
# Documentation: https://docs.ultralytics.com/datasets/detect/medical-pills/
# Example usage: yolo train data=medical-pills.yaml

View file

@ -1,4 +1,5 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# Open Images v7 dataset https://storage.googleapis.com/openimages/web/index.html by Google
# Documentation: https://docs.ultralytics.com/datasets/detect/open-images-v7/
# Example usage: yolo train data=open-images-v7.yaml

View file

@ -1,4 +1,5 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# Package-seg dataset by Ultralytics
# Documentation: https://docs.ultralytics.com/datasets/segment/package-seg/
# Example usage: yolo train data=package-seg.yaml

View file

@ -1,4 +1,5 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# Signature dataset by Ultralytics
# Documentation: https://docs.ultralytics.com/datasets/detect/signature/
# Example usage: yolo train data=signature.yaml

View file

@ -1,4 +1,5 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# Tiger Pose dataset by Ultralytics
# Documentation: https://docs.ultralytics.com/datasets/pose/tiger-pose/
# Example usage: yolo train data=tiger-pose.yaml

View file

@ -1,4 +1,5 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# DIUx xView 2018 Challenge https://challenge.xviewdataset.org by U.S. National Geospatial-Intelligence Agency (NGA)
# -------- DOWNLOAD DATA MANUALLY and jar xf val_images.zip to 'datasets/xView' before running train command! --------
# Documentation: https://docs.ultralytics.com/datasets/detect/xview/

View file

@ -1,5 +1,7 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
# Default training settings and hyperparameters for medium-augmentation COCO training
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# Global configuration YAML with settings and hyperparameters for YOLO training, validation, prediction and export
# For documentation see https://docs.ultralytics.com/usage/cfg/
task: detect # (str) YOLO task, i.e. detect, segment, classify, pose, obb
mode: train # (str) YOLO mode, i.e. train, val, predict, export, track, benchmark

View file

@ -1,5 +1,8 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLO11-cls image classification model. For Usage examples see https://docs.ultralytics.com/tasks/classify
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# Ultralytics YOLO11-cls image classification model with ResNet18 backbone
# Model docs: https://docs.ultralytics.com/models/yolo11
# Task docs: https://docs.ultralytics.com/tasks/classify
# Parameters
nc: 10 # number of classes
@ -11,7 +14,7 @@ scales: # model compound scaling constants, i.e. 'model=yolo11n-cls.yaml' will c
l: [1.00, 1.00, 1024]
x: [1.00, 1.25, 1024]
# YOLO11n backbone
# ResNet18 backbone
backbone:
# [from, repeats, module, args]
- [-1, 1, TorchVision, [512, "resnet18", "DEFAULT", True, 2]] # truncate two layers from the end

View file

@ -1,5 +1,8 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLO11-cls image classification model. For Usage examples see https://docs.ultralytics.com/tasks/classify
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# Ultralytics YOLO11-cls image classification model
# Model docs: https://docs.ultralytics.com/models/yolo11
# Task docs: https://docs.ultralytics.com/tasks/classify
# Parameters
nc: 80 # number of classes

View file

@ -1,5 +1,8 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLO11 Oriented Bounding Boxes (OBB) model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/obb
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# Ultralytics YOLO11-obb Oriented Bounding Boxes (OBB) model with P3/8 - P5/32 outputs
# Model docs: https://docs.ultralytics.com/models/yolo11
# Task docs: https://docs.ultralytics.com/tasks/obb
# Parameters
nc: 80 # number of classes

View file

@ -1,5 +1,8 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLO11-pose keypoints/pose estimation model. For Usage examples see https://docs.ultralytics.com/tasks/pose
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# Ultralytics YOLO11-pose keypoints/pose estimation model with P3/8 - P5/32 outputs
# Model docs: https://docs.ultralytics.com/models/yolo11
# Task docs: https://docs.ultralytics.com/tasks/pose
# Parameters
nc: 80 # number of classes

View file

@ -1,5 +1,8 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLO11-seg instance segmentation model. For Usage examples see https://docs.ultralytics.com/tasks/segment
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# Ultralytics YOLO11-seg instance segmentation model with P3/8 - P5/32 outputs
# Model docs: https://docs.ultralytics.com/models/yolo11
# Task docs: https://docs.ultralytics.com/tasks/segment
# Parameters
nc: 80 # number of classes

View file

@ -1,5 +1,8 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLO11 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# Ultralytics YOLO11 object detection model with P3/8 - P5/32 outputs
# Model docs: https://docs.ultralytics.com/models/yolo11
# Task docs: https://docs.ultralytics.com/tasks/detect
# Parameters
nc: 80 # number of classes

View file

@ -1,5 +1,8 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
# RT-DETR-l object detection model with P3-P5 outputs. For details see https://docs.ultralytics.com/models/rtdetr
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# Ultralytics RT-DETR-l hybrid object detection model with P3/8 - P5/32 outputs
# Model docs: https://docs.ultralytics.com/models/rtdetr
# Task docs: https://docs.ultralytics.com/tasks/detect
# Parameters
nc: 80 # number of classes

View file

@ -1,5 +1,8 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
# RT-DETR-ResNet101 object detection model with P3-P5 outputs.
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# Ultralytics RT-DETR-ResNet101 hybrid object detection model with P3/8 - P5/32 outputs
# Model docs: https://docs.ultralytics.com/models/rtdetr
# Task docs: https://docs.ultralytics.com/tasks/detect
# Parameters
nc: 80 # number of classes

View file

@ -1,5 +1,8 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
# RT-DETR-ResNet50 object detection model with P3-P5 outputs.
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# Ultralytics RT-DETR-ResNet50 hybrid object detection model with P3/8 - P5/32 outputs
# Model docs: https://docs.ultralytics.com/models/rtdetr
# Task docs: https://docs.ultralytics.com/tasks/detect
# Parameters
nc: 80 # number of classes

View file

@ -1,5 +1,8 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
# RT-DETR-x object detection model with P3-P5 outputs. For details see https://docs.ultralytics.com/models/rtdetr
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# Ultralytics RT-DETR-x hybrid object detection model with P3/8 - P5/32 outputs
# Model docs: https://docs.ultralytics.com/models/rtdetr
# Task docs: https://docs.ultralytics.com/tasks/detect
# Parameters
nc: 80 # number of classes

View file

@ -1,5 +1,8 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv10 object detection model. For Usage examples see https://docs.ultralytics.com/tasks/detect
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# YOLOv10b object detection model with P3/8 - P5/32 outputs
# Model docs: https://docs.ultralytics.com/models/yolov10
# Task docs: https://docs.ultralytics.com/tasks/detect
# Parameters
nc: 80 # number of classes

View file

@ -1,5 +1,8 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv10 object detection model. For Usage examples see https://docs.ultralytics.com/tasks/detect
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# YOLOv10l object detection model with P3/8 - P5/32 outputs
# Model docs: https://docs.ultralytics.com/models/yolov10
# Task docs: https://docs.ultralytics.com/tasks/detect
# Parameters
nc: 80 # number of classes

View file

@ -1,5 +1,8 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv10 object detection model. For Usage examples see https://docs.ultralytics.com/tasks/detect
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# YOLOv10m object detection model with P3/8 - P5/32 outputs
# Model docs: https://docs.ultralytics.com/models/yolov10
# Task docs: https://docs.ultralytics.com/tasks/detect
# Parameters
nc: 80 # number of classes

View file

@ -1,5 +1,8 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv10 object detection model. For Usage examples see https://docs.ultralytics.com/tasks/detect
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# YOLOv10n object detection model with P3/8 - P5/32 outputs
# Model docs: https://docs.ultralytics.com/models/yolov10
# Task docs: https://docs.ultralytics.com/tasks/detect
# Parameters
nc: 80 # number of classes

View file

@ -1,5 +1,8 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv10 object detection model. For Usage examples see https://docs.ultralytics.com/tasks/detect
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# YOLOv10s object detection model with P3/8 - P5/32 outputs
# Model docs: https://docs.ultralytics.com/models/yolov10
# Task docs: https://docs.ultralytics.com/tasks/detect
# Parameters
nc: 80 # number of classes

View file

@ -1,5 +1,8 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv10 object detection model. For Usage examples see https://docs.ultralytics.com/tasks/detect
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# YOLOv10x object detection model with P3/8 - P5/32 outputs
# Model docs: https://docs.ultralytics.com/models/yolov10
# Task docs: https://docs.ultralytics.com/tasks/detect
# Parameters
nc: 80 # number of classes

View file

@ -1,5 +1,8 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv3-SPP object detection model with P3-P5 outputs. For details see https://docs.ultralytics.com/models/yolov3
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# Ultralytics YOLOv3-SPP object detection model with P3/8 - P5/32 outputs
# Model docs: https://docs.ultralytics.com/models/yolov3
# Task docs: https://docs.ultralytics.com/tasks/detect
# Parameters
nc: 80 # number of classes

View file

@ -1,5 +1,8 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv3-tiny object detection model with P4-P5 outputs. For details see https://docs.ultralytics.com/models/yolov3
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# Ultralytics YOLOv3-tiiny object detection model with P4/16 - P5/32 outputs
# Model docs: https://docs.ultralytics.com/models/yolov3
# Task docs: https://docs.ultralytics.com/tasks/detect
# Parameters
nc: 80 # number of classes

View file

@ -1,5 +1,8 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv3 object detection model with P3-P5 outputs. For details see https://docs.ultralytics.com/models/yolov3
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# Ultralytics YOLOv3 object detection model with P3/8 - P5/32 outputs
# Model docs: https://docs.ultralytics.com/models/yolov3
# Task docs: https://docs.ultralytics.com/tasks/detect
# Parameters
nc: 80 # number of classes

View file

@ -1,5 +1,8 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv5 object detection model with P3-P6 outputs. For details see https://docs.ultralytics.com/models/yolov5
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# Ultralytics YOLOv5 object detection model with P3/8 - P6/64 outputs
# Model docs: https://docs.ultralytics.com/models/yolov5
# Task docs: https://docs.ultralytics.com/tasks/detect
# Parameters
nc: 80 # number of classes

View file

@ -1,5 +1,8 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv5 object detection model with P3-P5 outputs. For details see https://docs.ultralytics.com/models/yolov5
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# Ultralytics YOLOv5 object detection model with P3/8 - P5/32 outputs
# Model docs: https://docs.ultralytics.com/models/yolov5
# Task docs: https://docs.ultralytics.com/tasks/detect
# Parameters
nc: 80 # number of classes

View file

@ -1,5 +1,8 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv6 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/models/yolov6
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# Meituan YOLOv6 object detection model with P3/8 - P5/32 outputs
# Model docs: https://docs.ultralytics.com/models/yolov6
# Task docs: https://docs.ultralytics.com/tasks/detect
# Parameters
nc: 80 # number of classes

View file

@ -1,5 +1,8 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8-cls image classification model. For Usage examples see https://docs.ultralytics.com/tasks/classify
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# Ultralytics YOLOv8-cls image classification model with ResNet101 backbone
# Model docs: https://docs.ultralytics.com/models/yolov8
# Task docs: https://docs.ultralytics.com/tasks/classify
# Parameters
nc: 1000 # number of classes

View file

@ -1,5 +1,8 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8-cls image classification model. For Usage examples see https://docs.ultralytics.com/tasks/classify
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# Ultralytics YOLOv8-cls image classification model with ResNet50 backbone
# Model docs: https://docs.ultralytics.com/models/yolov8
# Task docs: https://docs.ultralytics.com/tasks/classify
# Parameters
nc: 1000 # number of classes

View file

@ -1,5 +1,8 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8-cls image classification model. For Usage examples see https://docs.ultralytics.com/tasks/classify
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# Ultralytics YOLOv8-cls image classification model with YOLO backbone
# Model docs: https://docs.ultralytics.com/models/yolov8
# Task docs: https://docs.ultralytics.com/tasks/classify
# Parameters
nc: 1000 # number of classes

View file

@ -1,5 +1,9 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8 object detection model with P2-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# Ultralytics YOLOv8 object detection model with P2/4 - P5/32 outputs
# Model docs: https://docs.ultralytics.com/models/yolov8
# Task docs: https://docs.ultralytics.com/tasks/detect
# Employs Ghost convolutions and modules proposed in Huawei's GhostNet in https://arxiv.org/abs/1911.11907v2
# Parameters
nc: 80 # number of classes

View file

@ -1,5 +1,9 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8 object detection model with P3-P6 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# Ultralytics YOLOv8 object detection model with P3/8 - P6/64 outputs
# Model docs: https://docs.ultralytics.com/models/yolov8
# Task docs: https://docs.ultralytics.com/tasks/detect
# Employs Ghost convolutions and modules proposed in Huawei's GhostNet in https://arxiv.org/abs/1911.11907v2
# Parameters
nc: 80 # number of classes

View file

@ -1,5 +1,8 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# Ultralytics YOLOv8 object detection model with P3/8 - P5/32 outputs
# Model docs: https://docs.ultralytics.com/models/yolov8
# Task docs: https://docs.ultralytics.com/tasks/detect
# Employs Ghost convolutions and modules proposed in Huawei's GhostNet in https://arxiv.org/abs/1911.11907v2
# Parameters

View file

@ -1,5 +1,8 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8 Oriented Bounding Boxes (OBB) model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# Ultralytics YOLOv8-obb Oriented Bounding Boxes (OBB) model with P3/8 - P5/32 outputs
# Model docs: https://docs.ultralytics.com/models/yolov8
# Task docs: https://docs.ultralytics.com/tasks/obb
# Parameters
nc: 80 # number of classes

View file

@ -1,5 +1,8 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8 object detection model with P2-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# Ultralytics YOLOv8 object detection model with P2/4 - P5/32 outputs
# Model docs: https://docs.ultralytics.com/models/yolov8
# Task docs: https://docs.ultralytics.com/tasks/detect
# Parameters
nc: 80 # number of classes

View file

@ -1,5 +1,8 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8 object detection model with P3-P6 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# Ultralytics YOLOv8 object detection model with P3/8 - P6/64 outputs
# Model docs: https://docs.ultralytics.com/models/yolov8
# Task docs: https://docs.ultralytics.com/tasks/detect
# Parameters
nc: 80 # number of classes

View file

@ -1,5 +1,8 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8-pose-p6 keypoints/pose estimation model. For Usage examples see https://docs.ultralytics.com/tasks/pose
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# Ultralytics YOLOv8-pose keypoints/pose estimation model with P3/8 - P6/64 outputs
# Model docs: https://docs.ultralytics.com/models/yolov8
# Task docs: https://docs.ultralytics.com/tasks/pose
# Parameters
nc: 1 # number of classes

View file

@ -1,5 +1,8 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8-pose keypoints/pose estimation model. For Usage examples see https://docs.ultralytics.com/tasks/pose
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# Ultralytics YOLOv8-pose keypoints/pose estimation model with P3/8 - P5/32 outputs
# Model docs: https://docs.ultralytics.com/models/yolov8
# Task docs: https://docs.ultralytics.com/tasks/pose
# Parameters
nc: 1 # number of classes

View file

@ -1,5 +1,8 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# Ultralytics YOLOv8-RTDETR hybrid object detection model with P3/8 - P5/32 outputs
# Model docs: https://docs.ultralytics.com/models/rtdetr
# Task docs: https://docs.ultralytics.com/tasks/detect
# Parameters
nc: 80 # number of classes

View file

@ -1,5 +1,8 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8-seg-p6 instance segmentation model. For Usage examples see https://docs.ultralytics.com/tasks/segment
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# Ultralytics YOLOv8-seg instance segmentation model with P3/8 - P6/64 outputs
# Model docs: https://docs.ultralytics.com/models/yolov8
# Task docs: https://docs.ultralytics.com/tasks/segment
# Parameters
nc: 80 # number of classes

View file

@ -1,5 +1,8 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8-seg instance segmentation model. For Usage examples see https://docs.ultralytics.com/tasks/segment
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# Ultralytics YOLOv8-seg instance segmentation model with P3/8 - P5/32 outputs
# Model docs: https://docs.ultralytics.com/models/yolov8
# Task docs: https://docs.ultralytics.com/tasks/segment
# Parameters
nc: 80 # number of classes

View file

@ -1,5 +1,8 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8-World object detection model with P3-P5 outputs. For details see https://docs.ultralytics.com/tasks/detect
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# Ultralytics YOLOv8-World hybrid object detection model with P3/8 - P5/32 outputs
# Model docs: https://docs.ultralytics.com/models/yolo-world
# Task docs: https://docs.ultralytics.com/tasks/detect
# Parameters
nc: 80 # number of classes

View file

@ -1,5 +1,8 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8-World-v2 object detection model with P3-P5 outputs. For details see https://docs.ultralytics.com/tasks/detect
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# Ultralytics YOLOv8-Worldv2 hybrid object detection model with P3/8 - P5/32 outputs
# Model docs: https://docs.ultralytics.com/models/yolo-world
# Task docs: https://docs.ultralytics.com/tasks/detect
# Parameters
nc: 80 # number of classes

View file

@ -1,5 +1,8 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# Ultralytics YOLOv8 object detection model with P3/8 - P5/32 outputs
# Model docs: https://docs.ultralytics.com/models/yolov8
# Task docs: https://docs.ultralytics.com/tasks/detect
# Parameters
nc: 80 # number of classes

View file

@ -1,5 +1,8 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv9c-seg instance segmentation model. For Usage examples see https://docs.ultralytics.com/models/yolov9
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# YOLOv9c-seg instance segmentation model with P3/8 - P5/32 outputs
# Model docs: https://docs.ultralytics.com/models/yolov9
# Task docs: https://docs.ultralytics.com/tasks/segment
# 654 layers, 27897120 parameters, 159.4 GFLOPs
# Parameters

View file

@ -1,5 +1,8 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv9c object detection model. For Usage examples see https://docs.ultralytics.com/models/yolov9
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# YOLOv9c object detection model with P3/8 - P5/32 outputs
# Model docs: https://docs.ultralytics.com/models/yolov9
# Task docs: https://docs.ultralytics.com/tasks/detect
# 618 layers, 25590912 parameters, 104.0 GFLOPs
# Parameters

View file

@ -1,5 +1,8 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv9e-seg instance segmentation model. For Usage examples see https://docs.ultralytics.com/models/yolov9
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# YOLOv9e-seg instance segmentation model with P3/8 - P5/32 outputs
# Model docs: https://docs.ultralytics.com/models/yolov9
# Task docs: https://docs.ultralytics.com/tasks/segment
# 1261 layers, 60512800 parameters, 248.4 GFLOPs
# Parameters

View file

@ -1,5 +1,8 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv9e object detection model. For Usage examples see https://docs.ultralytics.com/models/yolov9
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# YOLOv9e object detection model with P3/8 - P5/32 outputs
# Model docs: https://docs.ultralytics.com/models/yolov9
# Task docs: https://docs.ultralytics.com/tasks/detect
# 1225 layers, 58206592 parameters, 193.0 GFLOPs
# Parameters

View file

@ -1,5 +1,8 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv9m object detection model. For Usage examples see https://docs.ultralytics.com/models/yolov9
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# YOLOv9m object detection model with P3/8 - P5/32 outputs
# Model docs: https://docs.ultralytics.com/models/yolov9
# Task docs: https://docs.ultralytics.com/tasks/detect
# 603 layers, 20216160 parameters, 77.9 GFLOPs
# Parameters

View file

@ -1,5 +1,8 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv9s object detection model. For Usage examples see https://docs.ultralytics.com/models/yolov9
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# YOLOv9s object detection model with P3/8 - P5/32 outputs
# Model docs: https://docs.ultralytics.com/models/yolov9
# Task docs: https://docs.ultralytics.com/tasks/detect
# 917 layers, 7318368 parameters, 27.6 GFLOPs
# Parameters

View file

@ -1,5 +1,8 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv9t object detection model. For Usage examples see https://docs.ultralytics.com/models/yolov9
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# YOLOv9t object detection model with P3/8 - P5/32 outputs
# Model docs: https://docs.ultralytics.com/models/yolov9
# Task docs: https://docs.ultralytics.com/tasks/detect
# 917 layers, 2128720 parameters, 8.5 GFLOPs
# Parameters

View file

@ -1,5 +1,7 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
# Configuration for Ultralytics Solutions: https://docs.ultralytics.com/solutions/
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# Global configuration YAML with settings and arguments for Ultralytics Solutions
# For documentation see https://docs.ultralytics.com/solutions/
# Object counting settings --------------------------------------------------------------------------------------------
region: # list[tuple[int, int]] object counting, queue or speed estimation region points.

View file

@ -1,5 +1,8 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
# Default YOLO tracker settings for BoT-SORT tracker https://github.com/NirAharon/BoT-SORT
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# Default Ultralytics settings for BoT-SORT tracker when using mode="track"
# For documentation and examples see https://docs.ultralytics.com/modes/track/
# For BoT-SORT source code see https://github.com/NirAharon/BoT-SORT
tracker_type: botsort # tracker type, ['botsort', 'bytetrack']
track_high_thresh: 0.25 # threshold for the first association

View file

@ -1,5 +1,8 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
# Default YOLO tracker settings for ByteTrack tracker https://github.com/ifzhang/ByteTrack
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# Default Ultralytics settings for ByteTrack tracker when using mode="track"
# For documentation and examples see https://docs.ultralytics.com/modes/track/
# For ByteTrack source code see https://github.com/ifzhang/ByteTrack
tracker_type: bytetrack # tracker type, ['botsort', 'bytetrack']
track_high_thresh: 0.25 # threshold for the first association