ultralytics 8.2.30 automated tags and release notes (#13164)
Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com> Co-authored-by: UltralyticsAssistant <web@ultralytics.com>
This commit is contained in:
parent
6367ff4748
commit
59eedcc3fa
29 changed files with 135 additions and 22 deletions
|
|
@ -127,6 +127,7 @@ Predict mode is used for making predictions using a trained YOLOv8 model on new
|
|||
```python
|
||||
import cv2
|
||||
from PIL import Image
|
||||
|
||||
from ultralytics import YOLO
|
||||
|
||||
model = YOLO("model.pt")
|
||||
|
|
|
|||
|
|
@ -130,6 +130,7 @@ If you have a dataset that uses the [segmentation dataset format](../datasets/se
|
|||
|
||||
```python
|
||||
import numpy as np
|
||||
|
||||
from ultralytics.utils.ops import segments2boxes
|
||||
|
||||
segments = np.array(
|
||||
|
|
@ -194,6 +195,7 @@ Convert a single polygon (as list) to a binary mask of the specified image size.
|
|||
|
||||
```python
|
||||
import numpy as np
|
||||
|
||||
from ultralytics.data.utils import polygon2mask
|
||||
|
||||
imgsz = (1080, 810)
|
||||
|
|
@ -215,6 +217,7 @@ To manage bounding box data, the `Bboxes` class will help to convert between box
|
|||
|
||||
```python
|
||||
import numpy as np
|
||||
|
||||
from ultralytics.utils.instance import Bboxes
|
||||
|
||||
boxes = Bboxes(
|
||||
|
|
@ -259,6 +262,7 @@ When scaling and image up or down, corresponding bounding box coordinates can be
|
|||
```{ .py .annotate }
|
||||
import cv2 as cv
|
||||
import numpy as np
|
||||
|
||||
from ultralytics.utils.ops import scale_boxes
|
||||
|
||||
image = cv.imread("ultralytics/assets/bus.jpg")
|
||||
|
|
@ -307,6 +311,7 @@ Convert bounding box coordinates from (x1, y1, x2, y2) format to (x, y, width, h
|
|||
|
||||
```python
|
||||
import numpy as np
|
||||
|
||||
from ultralytics.utils.ops import xyxy2xywh
|
||||
|
||||
xyxy_boxes = np.array(
|
||||
|
|
@ -359,6 +364,7 @@ Ultralytics includes an Annotator class that can be used to annotate any kind of
|
|||
```{ .py .annotate }
|
||||
import cv2 as cv
|
||||
import numpy as np
|
||||
|
||||
from ultralytics.utils.plotting import Annotator, colors
|
||||
|
||||
names = { # (1)!
|
||||
|
|
@ -402,6 +408,7 @@ image_with_bboxes = ann.result()
|
|||
```python
|
||||
import cv2 as cv
|
||||
import numpy as np
|
||||
|
||||
from ultralytics.utils.plotting import Annotator, colors
|
||||
|
||||
obb_names = {10: "small vehicle"}
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue