ultralytics 8.0.82 docs updates and fixes (#2098)
Co-authored-by: Ayush Chaurasia <ayush.chaurarsia@gmail.com> Co-authored-by: Aurelio Losquiño Muñoz <38859113+aurelm95@users.noreply.github.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Paula Derrenger <107626595+pderrenger@users.noreply.github.com> Co-authored-by: Laughing <61612323+Laughing-q@users.noreply.github.com>
This commit is contained in:
parent
a38f227672
commit
55a03ad85f
15 changed files with 174 additions and 50 deletions
|
|
@ -69,6 +69,15 @@ see the [Configuration](../usage/cfg.md) page.
|
|||
yolo classify train data=mnist160 model=yolov8n-cls.yaml pretrained=yolov8n-cls.pt epochs=100 imgsz=64
|
||||
```
|
||||
|
||||
### Dataset format
|
||||
The YOLO classification dataset format is same as the torchvision format. Each class of images has its own folder and you have to simply pass the path of the dataset folder, i.e, `yolo classify train data="path/to/dataset"`
|
||||
```
|
||||
dataset/
|
||||
├── class1/
|
||||
├── class2/
|
||||
├── class3/
|
||||
├── ...
|
||||
```
|
||||
## Val
|
||||
|
||||
Validate trained YOLOv8n-cls model accuracy on the MNIST160 dataset. No argument need to passed as the `model` retains
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue