YOLO11 Tasks, Modes, Usage, Macros and Solutions Updates (#16593)
Signed-off-by: UltralyticsAssistant <web@ultralytics.com>
This commit is contained in:
parent
3093fc9ec2
commit
51e93d6111
31 changed files with 541 additions and 541 deletions
|
|
@ -26,16 +26,16 @@ The output of an image classifier is a single class label and a confidence score
|
|||
|
||||
!!! tip
|
||||
|
||||
YOLOv8 Classify models use the `-cls` suffix, i.e. `yolov8n-cls.pt` and are pretrained on [ImageNet](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/datasets/ImageNet.yaml).
|
||||
YOLO11 Classify models use the `-cls` suffix, i.e. `yolo11n-cls.pt` and are pretrained on [ImageNet](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/datasets/ImageNet.yaml).
|
||||
|
||||
## [Models](https://github.com/ultralytics/ultralytics/tree/main/ultralytics/cfg/models/v8)
|
||||
## [Models](https://github.com/ultralytics/ultralytics/tree/main/ultralytics/cfg/models/11)
|
||||
|
||||
YOLOv8 pretrained Classify models are shown here. Detect, Segment and Pose models are pretrained on the [COCO](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/datasets/coco.yaml) dataset, while Classify models are pretrained on the [ImageNet](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/datasets/ImageNet.yaml) dataset.
|
||||
YOLO11 pretrained Classify models are shown here. Detect, Segment and Pose models are pretrained on the [COCO](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/datasets/coco.yaml) dataset, while Classify models are pretrained on the [ImageNet](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/datasets/ImageNet.yaml) dataset.
|
||||
|
||||
[Models](https://github.com/ultralytics/ultralytics/tree/main/ultralytics/cfg/models) download automatically from the latest Ultralytics [release](https://github.com/ultralytics/assets/releases) on first use.
|
||||
|
||||
| Model | size<br><sup>(pixels) | acc<br><sup>top1 | acc<br><sup>top5 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>T4 TensorRT10<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) at 640 |
|
||||
|----------------------------------------------------------------------------------------------|-----------------------|------------------|------------------|--------------------------------|-------------------------------------|--------------------|--------------------------|
|
||||
| -------------------------------------------------------------------------------------------- | --------------------- | ---------------- | ---------------- | ------------------------------ | ----------------------------------- | ------------------ | ------------------------ |
|
||||
| [YOLO11n-cls](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n-cls.pt) | 224 | 70.0 | 89.4 | 5.0 ± 0.3 | 1.1 ± 0.0 | 1.6 | 3.3 |
|
||||
| [YOLO11s-cls](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s-cls.pt) | 224 | 75.4 | 92.7 | 7.9 ± 0.2 | 1.3 ± 0.0 | 5.5 | 12.1 |
|
||||
| [YOLO11m-cls](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m-cls.pt) | 224 | 77.3 | 93.9 | 17.2 ± 0.4 | 2.0 ± 0.0 | 10.4 | 39.3 |
|
||||
|
|
@ -47,7 +47,7 @@ YOLOv8 pretrained Classify models are shown here. Detect, Segment and Pose model
|
|||
|
||||
## Train
|
||||
|
||||
Train YOLOv8n-cls on the MNIST160 dataset for 100 [epochs](https://www.ultralytics.com/glossary/epoch) at image size 64. For a full list of available arguments see the [Configuration](../usage/cfg.md) page.
|
||||
Train YOLO11n-cls on the MNIST160 dataset for 100 [epochs](https://www.ultralytics.com/glossary/epoch) at image size 64. For a full list of available arguments see the [Configuration](../usage/cfg.md) page.
|
||||
|
||||
!!! example
|
||||
|
||||
|
|
@ -57,9 +57,9 @@ Train YOLOv8n-cls on the MNIST160 dataset for 100 [epochs](https://www.ultralyti
|
|||
from ultralytics import YOLO
|
||||
|
||||
# Load a model
|
||||
model = YOLO("yolov8n-cls.yaml") # build a new model from YAML
|
||||
model = YOLO("yolov8n-cls.pt") # load a pretrained model (recommended for training)
|
||||
model = YOLO("yolov8n-cls.yaml").load("yolov8n-cls.pt") # build from YAML and transfer weights
|
||||
model = YOLO("yolo11n-cls.yaml") # build a new model from YAML
|
||||
model = YOLO("yolo11n-cls.pt") # load a pretrained model (recommended for training)
|
||||
model = YOLO("yolo11n-cls.yaml").load("yolo11n-cls.pt") # build from YAML and transfer weights
|
||||
|
||||
# Train the model
|
||||
results = model.train(data="mnist160", epochs=100, imgsz=64)
|
||||
|
|
@ -69,13 +69,13 @@ Train YOLOv8n-cls on the MNIST160 dataset for 100 [epochs](https://www.ultralyti
|
|||
|
||||
```bash
|
||||
# Build a new model from YAML and start training from scratch
|
||||
yolo classify train data=mnist160 model=yolov8n-cls.yaml epochs=100 imgsz=64
|
||||
yolo classify train data=mnist160 model=yolo11n-cls.yaml epochs=100 imgsz=64
|
||||
|
||||
# Start training from a pretrained *.pt model
|
||||
yolo classify train data=mnist160 model=yolov8n-cls.pt epochs=100 imgsz=64
|
||||
yolo classify train data=mnist160 model=yolo11n-cls.pt epochs=100 imgsz=64
|
||||
|
||||
# Build a new model from YAML, transfer pretrained weights to it and start training
|
||||
yolo classify train data=mnist160 model=yolov8n-cls.yaml pretrained=yolov8n-cls.pt epochs=100 imgsz=64
|
||||
yolo classify train data=mnist160 model=yolo11n-cls.yaml pretrained=yolo11n-cls.pt epochs=100 imgsz=64
|
||||
```
|
||||
|
||||
### Dataset format
|
||||
|
|
@ -84,7 +84,7 @@ YOLO classification dataset format can be found in detail in the [Dataset Guide]
|
|||
|
||||
## Val
|
||||
|
||||
Validate trained YOLOv8n-cls model [accuracy](https://www.ultralytics.com/glossary/accuracy) on the MNIST160 dataset. No arguments are needed as the `model` retains its training `data` and arguments as model attributes.
|
||||
Validate trained YOLO11n-cls model [accuracy](https://www.ultralytics.com/glossary/accuracy) on the MNIST160 dataset. No arguments are needed as the `model` retains its training `data` and arguments as model attributes.
|
||||
|
||||
!!! example
|
||||
|
||||
|
|
@ -94,7 +94,7 @@ Validate trained YOLOv8n-cls model [accuracy](https://www.ultralytics.com/glossa
|
|||
from ultralytics import YOLO
|
||||
|
||||
# Load a model
|
||||
model = YOLO("yolov8n-cls.pt") # load an official model
|
||||
model = YOLO("yolo11n-cls.pt") # load an official model
|
||||
model = YOLO("path/to/best.pt") # load a custom model
|
||||
|
||||
# Validate the model
|
||||
|
|
@ -106,13 +106,13 @@ Validate trained YOLOv8n-cls model [accuracy](https://www.ultralytics.com/glossa
|
|||
=== "CLI"
|
||||
|
||||
```bash
|
||||
yolo classify val model=yolov8n-cls.pt # val official model
|
||||
yolo classify val model=yolo11n-cls.pt # val official model
|
||||
yolo classify val model=path/to/best.pt # val custom model
|
||||
```
|
||||
|
||||
## Predict
|
||||
|
||||
Use a trained YOLOv8n-cls model to run predictions on images.
|
||||
Use a trained YOLO11n-cls model to run predictions on images.
|
||||
|
||||
!!! example
|
||||
|
||||
|
|
@ -122,7 +122,7 @@ Use a trained YOLOv8n-cls model to run predictions on images.
|
|||
from ultralytics import YOLO
|
||||
|
||||
# Load a model
|
||||
model = YOLO("yolov8n-cls.pt") # load an official model
|
||||
model = YOLO("yolo11n-cls.pt") # load an official model
|
||||
model = YOLO("path/to/best.pt") # load a custom model
|
||||
|
||||
# Predict with the model
|
||||
|
|
@ -132,7 +132,7 @@ Use a trained YOLOv8n-cls model to run predictions on images.
|
|||
=== "CLI"
|
||||
|
||||
```bash
|
||||
yolo classify predict model=yolov8n-cls.pt source='https://ultralytics.com/images/bus.jpg' # predict with official model
|
||||
yolo classify predict model=yolo11n-cls.pt source='https://ultralytics.com/images/bus.jpg' # predict with official model
|
||||
yolo classify predict model=path/to/best.pt source='https://ultralytics.com/images/bus.jpg' # predict with custom model
|
||||
```
|
||||
|
||||
|
|
@ -140,7 +140,7 @@ See full `predict` mode details in the [Predict](../modes/predict.md) page.
|
|||
|
||||
## Export
|
||||
|
||||
Export a YOLOv8n-cls model to a different format like ONNX, CoreML, etc.
|
||||
Export a YOLO11n-cls model to a different format like ONNX, CoreML, etc.
|
||||
|
||||
!!! example
|
||||
|
||||
|
|
@ -150,7 +150,7 @@ Export a YOLOv8n-cls model to a different format like ONNX, CoreML, etc.
|
|||
from ultralytics import YOLO
|
||||
|
||||
# Load a model
|
||||
model = YOLO("yolov8n-cls.pt") # load an official model
|
||||
model = YOLO("yolo11n-cls.pt") # load an official model
|
||||
model = YOLO("path/to/best.pt") # load a custom trained model
|
||||
|
||||
# Export the model
|
||||
|
|
@ -160,11 +160,11 @@ Export a YOLOv8n-cls model to a different format like ONNX, CoreML, etc.
|
|||
=== "CLI"
|
||||
|
||||
```bash
|
||||
yolo export model=yolov8n-cls.pt format=onnx # export official model
|
||||
yolo export model=yolo11n-cls.pt format=onnx # export official model
|
||||
yolo export model=path/to/best.pt format=onnx # export custom trained model
|
||||
```
|
||||
|
||||
Available YOLOv8-cls export formats are in the table below. You can export to any format using the `format` argument, i.e. `format='onnx'` or `format='engine'`. You can predict or validate directly on exported models, i.e. `yolo predict model=yolov8n-cls.onnx`. Usage examples are shown for your model after export completes.
|
||||
Available YOLO11-cls export formats are in the table below. You can export to any format using the `format` argument, i.e. `format='onnx'` or `format='engine'`. You can predict or validate directly on exported models, i.e. `yolo predict model=yolo11n-cls.onnx`. Usage examples are shown for your model after export completes.
|
||||
|
||||
{% include "macros/export-table.md" %}
|
||||
|
||||
|
|
@ -172,13 +172,13 @@ See full `export` details in the [Export](../modes/export.md) page.
|
|||
|
||||
## FAQ
|
||||
|
||||
### What is the purpose of YOLOv8 in image classification?
|
||||
### What is the purpose of YOLO11 in image classification?
|
||||
|
||||
YOLOv8 models, such as `yolov8n-cls.pt`, are designed for efficient image classification. They assign a single class label to an entire image along with a confidence score. This is particularly useful for applications where knowing the specific class of an image is sufficient, rather than identifying the location or shape of objects within the image.
|
||||
YOLO11 models, such as `yolo11n-cls.pt`, are designed for efficient image classification. They assign a single class label to an entire image along with a confidence score. This is particularly useful for applications where knowing the specific class of an image is sufficient, rather than identifying the location or shape of objects within the image.
|
||||
|
||||
### How do I train a YOLOv8 model for image classification?
|
||||
### How do I train a YOLO11 model for image classification?
|
||||
|
||||
To train a YOLOv8 model, you can use either Python or CLI commands. For example, to train a `yolov8n-cls` model on the MNIST160 dataset for 100 epochs at an image size of 64:
|
||||
To train a YOLO11 model, you can use either Python or CLI commands. For example, to train a `yolo11n-cls` model on the MNIST160 dataset for 100 epochs at an image size of 64:
|
||||
|
||||
!!! example
|
||||
|
||||
|
|
@ -188,7 +188,7 @@ To train a YOLOv8 model, you can use either Python or CLI commands. For example,
|
|||
from ultralytics import YOLO
|
||||
|
||||
# Load a model
|
||||
model = YOLO("yolov8n-cls.pt") # load a pretrained model (recommended for training)
|
||||
model = YOLO("yolo11n-cls.pt") # load a pretrained model (recommended for training)
|
||||
|
||||
# Train the model
|
||||
results = model.train(data="mnist160", epochs=100, imgsz=64)
|
||||
|
|
@ -197,18 +197,18 @@ To train a YOLOv8 model, you can use either Python or CLI commands. For example,
|
|||
=== "CLI"
|
||||
|
||||
```bash
|
||||
yolo classify train data=mnist160 model=yolov8n-cls.pt epochs=100 imgsz=64
|
||||
yolo classify train data=mnist160 model=yolo11n-cls.pt epochs=100 imgsz=64
|
||||
```
|
||||
|
||||
For more configuration options, visit the [Configuration](../usage/cfg.md) page.
|
||||
|
||||
### Where can I find pretrained YOLOv8 classification models?
|
||||
### Where can I find pretrained YOLO11 classification models?
|
||||
|
||||
Pretrained YOLOv8 classification models can be found in the [Models](https://github.com/ultralytics/ultralytics/tree/main/ultralytics/cfg/models/v8) section. Models like `yolov8n-cls.pt`, `yolov8s-cls.pt`, `yolov8m-cls.pt`, etc., are pretrained on the [ImageNet](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/datasets/ImageNet.yaml) dataset and can be easily downloaded and used for various image classification tasks.
|
||||
Pretrained YOLO11 classification models can be found in the [Models](https://github.com/ultralytics/ultralytics/tree/main/ultralytics/cfg/models/11) section. Models like `yolo11n-cls.pt`, `yolo11s-cls.pt`, `yolo11m-cls.pt`, etc., are pretrained on the [ImageNet](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/datasets/ImageNet.yaml) dataset and can be easily downloaded and used for various image classification tasks.
|
||||
|
||||
### How can I export a trained YOLOv8 model to different formats?
|
||||
### How can I export a trained YOLO11 model to different formats?
|
||||
|
||||
You can export a trained YOLOv8 model to various formats using Python or CLI commands. For instance, to export a model to ONNX format:
|
||||
You can export a trained YOLO11 model to various formats using Python or CLI commands. For instance, to export a model to ONNX format:
|
||||
|
||||
!!! example
|
||||
|
||||
|
|
@ -218,7 +218,7 @@ You can export a trained YOLOv8 model to various formats using Python or CLI com
|
|||
from ultralytics import YOLO
|
||||
|
||||
# Load a model
|
||||
model = YOLO("yolov8n-cls.pt") # load the trained model
|
||||
model = YOLO("yolo11n-cls.pt") # load the trained model
|
||||
|
||||
# Export the model to ONNX
|
||||
model.export(format="onnx")
|
||||
|
|
@ -227,12 +227,12 @@ You can export a trained YOLOv8 model to various formats using Python or CLI com
|
|||
=== "CLI"
|
||||
|
||||
```bash
|
||||
yolo export model=yolov8n-cls.pt format=onnx # export the trained model to ONNX format
|
||||
yolo export model=yolo11n-cls.pt format=onnx # export the trained model to ONNX format
|
||||
```
|
||||
|
||||
For detailed export options, refer to the [Export](../modes/export.md) page.
|
||||
|
||||
### How do I validate a trained YOLOv8 classification model?
|
||||
### How do I validate a trained YOLO11 classification model?
|
||||
|
||||
To validate a trained model's accuracy on a dataset like MNIST160, you can use the following Python or CLI commands:
|
||||
|
||||
|
|
@ -244,7 +244,7 @@ To validate a trained model's accuracy on a dataset like MNIST160, you can use t
|
|||
from ultralytics import YOLO
|
||||
|
||||
# Load a model
|
||||
model = YOLO("yolov8n-cls.pt") # load the trained model
|
||||
model = YOLO("yolo11n-cls.pt") # load the trained model
|
||||
|
||||
# Validate the model
|
||||
metrics = model.val() # no arguments needed, uses the dataset and settings from training
|
||||
|
|
@ -255,7 +255,7 @@ To validate a trained model's accuracy on a dataset like MNIST160, you can use t
|
|||
=== "CLI"
|
||||
|
||||
```bash
|
||||
yolo classify val model=yolov8n-cls.pt # validate the trained model
|
||||
yolo classify val model=yolo11n-cls.pt # validate the trained model
|
||||
```
|
||||
|
||||
For more information, visit the [Validate](#val) section.
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue