YOLO11 Tasks, Modes, Usage, Macros and Solutions Updates (#16593)
Signed-off-by: UltralyticsAssistant <web@ultralytics.com>
This commit is contained in:
parent
3093fc9ec2
commit
51e93d6111
31 changed files with 541 additions and 541 deletions
|
|
@ -26,16 +26,16 @@ The output of an image classifier is a single class label and a confidence score
|
|||
|
||||
!!! tip
|
||||
|
||||
YOLOv8 Classify models use the `-cls` suffix, i.e. `yolov8n-cls.pt` and are pretrained on [ImageNet](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/datasets/ImageNet.yaml).
|
||||
YOLO11 Classify models use the `-cls` suffix, i.e. `yolo11n-cls.pt` and are pretrained on [ImageNet](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/datasets/ImageNet.yaml).
|
||||
|
||||
## [Models](https://github.com/ultralytics/ultralytics/tree/main/ultralytics/cfg/models/v8)
|
||||
## [Models](https://github.com/ultralytics/ultralytics/tree/main/ultralytics/cfg/models/11)
|
||||
|
||||
YOLOv8 pretrained Classify models are shown here. Detect, Segment and Pose models are pretrained on the [COCO](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/datasets/coco.yaml) dataset, while Classify models are pretrained on the [ImageNet](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/datasets/ImageNet.yaml) dataset.
|
||||
YOLO11 pretrained Classify models are shown here. Detect, Segment and Pose models are pretrained on the [COCO](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/datasets/coco.yaml) dataset, while Classify models are pretrained on the [ImageNet](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/datasets/ImageNet.yaml) dataset.
|
||||
|
||||
[Models](https://github.com/ultralytics/ultralytics/tree/main/ultralytics/cfg/models) download automatically from the latest Ultralytics [release](https://github.com/ultralytics/assets/releases) on first use.
|
||||
|
||||
| Model | size<br><sup>(pixels) | acc<br><sup>top1 | acc<br><sup>top5 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>T4 TensorRT10<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) at 640 |
|
||||
|----------------------------------------------------------------------------------------------|-----------------------|------------------|------------------|--------------------------------|-------------------------------------|--------------------|--------------------------|
|
||||
| -------------------------------------------------------------------------------------------- | --------------------- | ---------------- | ---------------- | ------------------------------ | ----------------------------------- | ------------------ | ------------------------ |
|
||||
| [YOLO11n-cls](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n-cls.pt) | 224 | 70.0 | 89.4 | 5.0 ± 0.3 | 1.1 ± 0.0 | 1.6 | 3.3 |
|
||||
| [YOLO11s-cls](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s-cls.pt) | 224 | 75.4 | 92.7 | 7.9 ± 0.2 | 1.3 ± 0.0 | 5.5 | 12.1 |
|
||||
| [YOLO11m-cls](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m-cls.pt) | 224 | 77.3 | 93.9 | 17.2 ± 0.4 | 2.0 ± 0.0 | 10.4 | 39.3 |
|
||||
|
|
@ -47,7 +47,7 @@ YOLOv8 pretrained Classify models are shown here. Detect, Segment and Pose model
|
|||
|
||||
## Train
|
||||
|
||||
Train YOLOv8n-cls on the MNIST160 dataset for 100 [epochs](https://www.ultralytics.com/glossary/epoch) at image size 64. For a full list of available arguments see the [Configuration](../usage/cfg.md) page.
|
||||
Train YOLO11n-cls on the MNIST160 dataset for 100 [epochs](https://www.ultralytics.com/glossary/epoch) at image size 64. For a full list of available arguments see the [Configuration](../usage/cfg.md) page.
|
||||
|
||||
!!! example
|
||||
|
||||
|
|
@ -57,9 +57,9 @@ Train YOLOv8n-cls on the MNIST160 dataset for 100 [epochs](https://www.ultralyti
|
|||
from ultralytics import YOLO
|
||||
|
||||
# Load a model
|
||||
model = YOLO("yolov8n-cls.yaml") # build a new model from YAML
|
||||
model = YOLO("yolov8n-cls.pt") # load a pretrained model (recommended for training)
|
||||
model = YOLO("yolov8n-cls.yaml").load("yolov8n-cls.pt") # build from YAML and transfer weights
|
||||
model = YOLO("yolo11n-cls.yaml") # build a new model from YAML
|
||||
model = YOLO("yolo11n-cls.pt") # load a pretrained model (recommended for training)
|
||||
model = YOLO("yolo11n-cls.yaml").load("yolo11n-cls.pt") # build from YAML and transfer weights
|
||||
|
||||
# Train the model
|
||||
results = model.train(data="mnist160", epochs=100, imgsz=64)
|
||||
|
|
@ -69,13 +69,13 @@ Train YOLOv8n-cls on the MNIST160 dataset for 100 [epochs](https://www.ultralyti
|
|||
|
||||
```bash
|
||||
# Build a new model from YAML and start training from scratch
|
||||
yolo classify train data=mnist160 model=yolov8n-cls.yaml epochs=100 imgsz=64
|
||||
yolo classify train data=mnist160 model=yolo11n-cls.yaml epochs=100 imgsz=64
|
||||
|
||||
# Start training from a pretrained *.pt model
|
||||
yolo classify train data=mnist160 model=yolov8n-cls.pt epochs=100 imgsz=64
|
||||
yolo classify train data=mnist160 model=yolo11n-cls.pt epochs=100 imgsz=64
|
||||
|
||||
# Build a new model from YAML, transfer pretrained weights to it and start training
|
||||
yolo classify train data=mnist160 model=yolov8n-cls.yaml pretrained=yolov8n-cls.pt epochs=100 imgsz=64
|
||||
yolo classify train data=mnist160 model=yolo11n-cls.yaml pretrained=yolo11n-cls.pt epochs=100 imgsz=64
|
||||
```
|
||||
|
||||
### Dataset format
|
||||
|
|
@ -84,7 +84,7 @@ YOLO classification dataset format can be found in detail in the [Dataset Guide]
|
|||
|
||||
## Val
|
||||
|
||||
Validate trained YOLOv8n-cls model [accuracy](https://www.ultralytics.com/glossary/accuracy) on the MNIST160 dataset. No arguments are needed as the `model` retains its training `data` and arguments as model attributes.
|
||||
Validate trained YOLO11n-cls model [accuracy](https://www.ultralytics.com/glossary/accuracy) on the MNIST160 dataset. No arguments are needed as the `model` retains its training `data` and arguments as model attributes.
|
||||
|
||||
!!! example
|
||||
|
||||
|
|
@ -94,7 +94,7 @@ Validate trained YOLOv8n-cls model [accuracy](https://www.ultralytics.com/glossa
|
|||
from ultralytics import YOLO
|
||||
|
||||
# Load a model
|
||||
model = YOLO("yolov8n-cls.pt") # load an official model
|
||||
model = YOLO("yolo11n-cls.pt") # load an official model
|
||||
model = YOLO("path/to/best.pt") # load a custom model
|
||||
|
||||
# Validate the model
|
||||
|
|
@ -106,13 +106,13 @@ Validate trained YOLOv8n-cls model [accuracy](https://www.ultralytics.com/glossa
|
|||
=== "CLI"
|
||||
|
||||
```bash
|
||||
yolo classify val model=yolov8n-cls.pt # val official model
|
||||
yolo classify val model=yolo11n-cls.pt # val official model
|
||||
yolo classify val model=path/to/best.pt # val custom model
|
||||
```
|
||||
|
||||
## Predict
|
||||
|
||||
Use a trained YOLOv8n-cls model to run predictions on images.
|
||||
Use a trained YOLO11n-cls model to run predictions on images.
|
||||
|
||||
!!! example
|
||||
|
||||
|
|
@ -122,7 +122,7 @@ Use a trained YOLOv8n-cls model to run predictions on images.
|
|||
from ultralytics import YOLO
|
||||
|
||||
# Load a model
|
||||
model = YOLO("yolov8n-cls.pt") # load an official model
|
||||
model = YOLO("yolo11n-cls.pt") # load an official model
|
||||
model = YOLO("path/to/best.pt") # load a custom model
|
||||
|
||||
# Predict with the model
|
||||
|
|
@ -132,7 +132,7 @@ Use a trained YOLOv8n-cls model to run predictions on images.
|
|||
=== "CLI"
|
||||
|
||||
```bash
|
||||
yolo classify predict model=yolov8n-cls.pt source='https://ultralytics.com/images/bus.jpg' # predict with official model
|
||||
yolo classify predict model=yolo11n-cls.pt source='https://ultralytics.com/images/bus.jpg' # predict with official model
|
||||
yolo classify predict model=path/to/best.pt source='https://ultralytics.com/images/bus.jpg' # predict with custom model
|
||||
```
|
||||
|
||||
|
|
@ -140,7 +140,7 @@ See full `predict` mode details in the [Predict](../modes/predict.md) page.
|
|||
|
||||
## Export
|
||||
|
||||
Export a YOLOv8n-cls model to a different format like ONNX, CoreML, etc.
|
||||
Export a YOLO11n-cls model to a different format like ONNX, CoreML, etc.
|
||||
|
||||
!!! example
|
||||
|
||||
|
|
@ -150,7 +150,7 @@ Export a YOLOv8n-cls model to a different format like ONNX, CoreML, etc.
|
|||
from ultralytics import YOLO
|
||||
|
||||
# Load a model
|
||||
model = YOLO("yolov8n-cls.pt") # load an official model
|
||||
model = YOLO("yolo11n-cls.pt") # load an official model
|
||||
model = YOLO("path/to/best.pt") # load a custom trained model
|
||||
|
||||
# Export the model
|
||||
|
|
@ -160,11 +160,11 @@ Export a YOLOv8n-cls model to a different format like ONNX, CoreML, etc.
|
|||
=== "CLI"
|
||||
|
||||
```bash
|
||||
yolo export model=yolov8n-cls.pt format=onnx # export official model
|
||||
yolo export model=yolo11n-cls.pt format=onnx # export official model
|
||||
yolo export model=path/to/best.pt format=onnx # export custom trained model
|
||||
```
|
||||
|
||||
Available YOLOv8-cls export formats are in the table below. You can export to any format using the `format` argument, i.e. `format='onnx'` or `format='engine'`. You can predict or validate directly on exported models, i.e. `yolo predict model=yolov8n-cls.onnx`. Usage examples are shown for your model after export completes.
|
||||
Available YOLO11-cls export formats are in the table below. You can export to any format using the `format` argument, i.e. `format='onnx'` or `format='engine'`. You can predict or validate directly on exported models, i.e. `yolo predict model=yolo11n-cls.onnx`. Usage examples are shown for your model after export completes.
|
||||
|
||||
{% include "macros/export-table.md" %}
|
||||
|
||||
|
|
@ -172,13 +172,13 @@ See full `export` details in the [Export](../modes/export.md) page.
|
|||
|
||||
## FAQ
|
||||
|
||||
### What is the purpose of YOLOv8 in image classification?
|
||||
### What is the purpose of YOLO11 in image classification?
|
||||
|
||||
YOLOv8 models, such as `yolov8n-cls.pt`, are designed for efficient image classification. They assign a single class label to an entire image along with a confidence score. This is particularly useful for applications where knowing the specific class of an image is sufficient, rather than identifying the location or shape of objects within the image.
|
||||
YOLO11 models, such as `yolo11n-cls.pt`, are designed for efficient image classification. They assign a single class label to an entire image along with a confidence score. This is particularly useful for applications where knowing the specific class of an image is sufficient, rather than identifying the location or shape of objects within the image.
|
||||
|
||||
### How do I train a YOLOv8 model for image classification?
|
||||
### How do I train a YOLO11 model for image classification?
|
||||
|
||||
To train a YOLOv8 model, you can use either Python or CLI commands. For example, to train a `yolov8n-cls` model on the MNIST160 dataset for 100 epochs at an image size of 64:
|
||||
To train a YOLO11 model, you can use either Python or CLI commands. For example, to train a `yolo11n-cls` model on the MNIST160 dataset for 100 epochs at an image size of 64:
|
||||
|
||||
!!! example
|
||||
|
||||
|
|
@ -188,7 +188,7 @@ To train a YOLOv8 model, you can use either Python or CLI commands. For example,
|
|||
from ultralytics import YOLO
|
||||
|
||||
# Load a model
|
||||
model = YOLO("yolov8n-cls.pt") # load a pretrained model (recommended for training)
|
||||
model = YOLO("yolo11n-cls.pt") # load a pretrained model (recommended for training)
|
||||
|
||||
# Train the model
|
||||
results = model.train(data="mnist160", epochs=100, imgsz=64)
|
||||
|
|
@ -197,18 +197,18 @@ To train a YOLOv8 model, you can use either Python or CLI commands. For example,
|
|||
=== "CLI"
|
||||
|
||||
```bash
|
||||
yolo classify train data=mnist160 model=yolov8n-cls.pt epochs=100 imgsz=64
|
||||
yolo classify train data=mnist160 model=yolo11n-cls.pt epochs=100 imgsz=64
|
||||
```
|
||||
|
||||
For more configuration options, visit the [Configuration](../usage/cfg.md) page.
|
||||
|
||||
### Where can I find pretrained YOLOv8 classification models?
|
||||
### Where can I find pretrained YOLO11 classification models?
|
||||
|
||||
Pretrained YOLOv8 classification models can be found in the [Models](https://github.com/ultralytics/ultralytics/tree/main/ultralytics/cfg/models/v8) section. Models like `yolov8n-cls.pt`, `yolov8s-cls.pt`, `yolov8m-cls.pt`, etc., are pretrained on the [ImageNet](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/datasets/ImageNet.yaml) dataset and can be easily downloaded and used for various image classification tasks.
|
||||
Pretrained YOLO11 classification models can be found in the [Models](https://github.com/ultralytics/ultralytics/tree/main/ultralytics/cfg/models/11) section. Models like `yolo11n-cls.pt`, `yolo11s-cls.pt`, `yolo11m-cls.pt`, etc., are pretrained on the [ImageNet](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/datasets/ImageNet.yaml) dataset and can be easily downloaded and used for various image classification tasks.
|
||||
|
||||
### How can I export a trained YOLOv8 model to different formats?
|
||||
### How can I export a trained YOLO11 model to different formats?
|
||||
|
||||
You can export a trained YOLOv8 model to various formats using Python or CLI commands. For instance, to export a model to ONNX format:
|
||||
You can export a trained YOLO11 model to various formats using Python or CLI commands. For instance, to export a model to ONNX format:
|
||||
|
||||
!!! example
|
||||
|
||||
|
|
@ -218,7 +218,7 @@ You can export a trained YOLOv8 model to various formats using Python or CLI com
|
|||
from ultralytics import YOLO
|
||||
|
||||
# Load a model
|
||||
model = YOLO("yolov8n-cls.pt") # load the trained model
|
||||
model = YOLO("yolo11n-cls.pt") # load the trained model
|
||||
|
||||
# Export the model to ONNX
|
||||
model.export(format="onnx")
|
||||
|
|
@ -227,12 +227,12 @@ You can export a trained YOLOv8 model to various formats using Python or CLI com
|
|||
=== "CLI"
|
||||
|
||||
```bash
|
||||
yolo export model=yolov8n-cls.pt format=onnx # export the trained model to ONNX format
|
||||
yolo export model=yolo11n-cls.pt format=onnx # export the trained model to ONNX format
|
||||
```
|
||||
|
||||
For detailed export options, refer to the [Export](../modes/export.md) page.
|
||||
|
||||
### How do I validate a trained YOLOv8 classification model?
|
||||
### How do I validate a trained YOLO11 classification model?
|
||||
|
||||
To validate a trained model's accuracy on a dataset like MNIST160, you can use the following Python or CLI commands:
|
||||
|
||||
|
|
@ -244,7 +244,7 @@ To validate a trained model's accuracy on a dataset like MNIST160, you can use t
|
|||
from ultralytics import YOLO
|
||||
|
||||
# Load a model
|
||||
model = YOLO("yolov8n-cls.pt") # load the trained model
|
||||
model = YOLO("yolo11n-cls.pt") # load the trained model
|
||||
|
||||
# Validate the model
|
||||
metrics = model.val() # no arguments needed, uses the dataset and settings from training
|
||||
|
|
@ -255,7 +255,7 @@ To validate a trained model's accuracy on a dataset like MNIST160, you can use t
|
|||
=== "CLI"
|
||||
|
||||
```bash
|
||||
yolo classify val model=yolov8n-cls.pt # validate the trained model
|
||||
yolo classify val model=yolo11n-cls.pt # validate the trained model
|
||||
```
|
||||
|
||||
For more information, visit the [Validate](#val) section.
|
||||
|
|
|
|||
|
|
@ -25,16 +25,16 @@ The output of an object detector is a set of bounding boxes that enclose the obj
|
|||
|
||||
!!! tip
|
||||
|
||||
YOLOv8 Detect models are the default YOLOv8 models, i.e. `yolov8n.pt` and are pretrained on [COCO](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/datasets/coco.yaml).
|
||||
YOLO11 Detect models are the default YOLO11 models, i.e. `yolo11n.pt` and are pretrained on [COCO](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/datasets/coco.yaml).
|
||||
|
||||
## [Models](https://github.com/ultralytics/ultralytics/tree/main/ultralytics/cfg/models/v8)
|
||||
## [Models](https://github.com/ultralytics/ultralytics/tree/main/ultralytics/cfg/models/11)
|
||||
|
||||
YOLOv8 pretrained Detect models are shown here. Detect, Segment and Pose models are pretrained on the [COCO](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/datasets/coco.yaml) dataset, while Classify models are pretrained on the [ImageNet](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/datasets/ImageNet.yaml) dataset.
|
||||
YOLO11 pretrained Detect models are shown here. Detect, Segment and Pose models are pretrained on the [COCO](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/datasets/coco.yaml) dataset, while Classify models are pretrained on the [ImageNet](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/datasets/ImageNet.yaml) dataset.
|
||||
|
||||
[Models](https://github.com/ultralytics/ultralytics/tree/main/ultralytics/cfg/models) download automatically from the latest Ultralytics [release](https://github.com/ultralytics/assets/releases) on first use.
|
||||
|
||||
| Model | size<br><sup>(pixels) | mAP<sup>val<br>50-95 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>T4 TensorRT10<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
|
||||
|--------------------------------------------------------------------------------------|-----------------------|----------------------|--------------------------------|-------------------------------------|--------------------|-------------------|
|
||||
| ------------------------------------------------------------------------------------ | --------------------- | -------------------- | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
|
||||
| [YOLO11n](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n.pt) | 640 | 39.5 | 56.1 ± 0.8 | 1.5 ± 0.0 | 2.6 | 6.5 |
|
||||
| [YOLO11s](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s.pt) | 640 | 47.0 | 90.0 ± 1.2 | 2.5 ± 0.0 | 9.4 | 21.5 |
|
||||
| [YOLO11m](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m.pt) | 640 | 51.5 | 183.2 ± 2.0 | 4.7 ± 0.1 | 20.1 | 68.0 |
|
||||
|
|
@ -46,7 +46,7 @@ YOLOv8 pretrained Detect models are shown here. Detect, Segment and Pose models
|
|||
|
||||
## Train
|
||||
|
||||
Train YOLOv8n on the COCO8 dataset for 100 [epochs](https://www.ultralytics.com/glossary/epoch) at image size 640. For a full list of available arguments see the [Configuration](../usage/cfg.md) page.
|
||||
Train YOLO11n on the COCO8 dataset for 100 [epochs](https://www.ultralytics.com/glossary/epoch) at image size 640. For a full list of available arguments see the [Configuration](../usage/cfg.md) page.
|
||||
|
||||
!!! example
|
||||
|
||||
|
|
@ -56,9 +56,9 @@ Train YOLOv8n on the COCO8 dataset for 100 [epochs](https://www.ultralytics.com/
|
|||
from ultralytics import YOLO
|
||||
|
||||
# Load a model
|
||||
model = YOLO("yolov8n.yaml") # build a new model from YAML
|
||||
model = YOLO("yolov8n.pt") # load a pretrained model (recommended for training)
|
||||
model = YOLO("yolov8n.yaml").load("yolov8n.pt") # build from YAML and transfer weights
|
||||
model = YOLO("yolo11n.yaml") # build a new model from YAML
|
||||
model = YOLO("yolo11n.pt") # load a pretrained model (recommended for training)
|
||||
model = YOLO("yolo11n.yaml").load("yolo11n.pt") # build from YAML and transfer weights
|
||||
|
||||
# Train the model
|
||||
results = model.train(data="coco8.yaml", epochs=100, imgsz=640)
|
||||
|
|
@ -68,13 +68,13 @@ Train YOLOv8n on the COCO8 dataset for 100 [epochs](https://www.ultralytics.com/
|
|||
|
||||
```bash
|
||||
# Build a new model from YAML and start training from scratch
|
||||
yolo detect train data=coco8.yaml model=yolov8n.yaml epochs=100 imgsz=640
|
||||
yolo detect train data=coco8.yaml model=yolo11n.yaml epochs=100 imgsz=640
|
||||
|
||||
# Start training from a pretrained *.pt model
|
||||
yolo detect train data=coco8.yaml model=yolov8n.pt epochs=100 imgsz=640
|
||||
yolo detect train data=coco8.yaml model=yolo11n.pt epochs=100 imgsz=640
|
||||
|
||||
# Build a new model from YAML, transfer pretrained weights to it and start training
|
||||
yolo detect train data=coco8.yaml model=yolov8n.yaml pretrained=yolov8n.pt epochs=100 imgsz=640
|
||||
yolo detect train data=coco8.yaml model=yolo11n.yaml pretrained=yolo11n.pt epochs=100 imgsz=640
|
||||
```
|
||||
|
||||
### Dataset format
|
||||
|
|
@ -83,7 +83,7 @@ YOLO detection dataset format can be found in detail in the [Dataset Guide](../d
|
|||
|
||||
## Val
|
||||
|
||||
Validate trained YOLOv8n model [accuracy](https://www.ultralytics.com/glossary/accuracy) on the COCO8 dataset. No arguments are needed as the `model` retains its training `data` and arguments as model attributes.
|
||||
Validate trained YOLO11n model [accuracy](https://www.ultralytics.com/glossary/accuracy) on the COCO8 dataset. No arguments are needed as the `model` retains its training `data` and arguments as model attributes.
|
||||
|
||||
!!! example
|
||||
|
||||
|
|
@ -93,7 +93,7 @@ Validate trained YOLOv8n model [accuracy](https://www.ultralytics.com/glossary/a
|
|||
from ultralytics import YOLO
|
||||
|
||||
# Load a model
|
||||
model = YOLO("yolov8n.pt") # load an official model
|
||||
model = YOLO("yolo11n.pt") # load an official model
|
||||
model = YOLO("path/to/best.pt") # load a custom model
|
||||
|
||||
# Validate the model
|
||||
|
|
@ -107,13 +107,13 @@ Validate trained YOLOv8n model [accuracy](https://www.ultralytics.com/glossary/a
|
|||
=== "CLI"
|
||||
|
||||
```bash
|
||||
yolo detect val model=yolov8n.pt # val official model
|
||||
yolo detect val model=yolo11n.pt # val official model
|
||||
yolo detect val model=path/to/best.pt # val custom model
|
||||
```
|
||||
|
||||
## Predict
|
||||
|
||||
Use a trained YOLOv8n model to run predictions on images.
|
||||
Use a trained YOLO11n model to run predictions on images.
|
||||
|
||||
!!! example
|
||||
|
||||
|
|
@ -123,7 +123,7 @@ Use a trained YOLOv8n model to run predictions on images.
|
|||
from ultralytics import YOLO
|
||||
|
||||
# Load a model
|
||||
model = YOLO("yolov8n.pt") # load an official model
|
||||
model = YOLO("yolo11n.pt") # load an official model
|
||||
model = YOLO("path/to/best.pt") # load a custom model
|
||||
|
||||
# Predict with the model
|
||||
|
|
@ -133,7 +133,7 @@ Use a trained YOLOv8n model to run predictions on images.
|
|||
=== "CLI"
|
||||
|
||||
```bash
|
||||
yolo detect predict model=yolov8n.pt source='https://ultralytics.com/images/bus.jpg' # predict with official model
|
||||
yolo detect predict model=yolo11n.pt source='https://ultralytics.com/images/bus.jpg' # predict with official model
|
||||
yolo detect predict model=path/to/best.pt source='https://ultralytics.com/images/bus.jpg' # predict with custom model
|
||||
```
|
||||
|
||||
|
|
@ -141,7 +141,7 @@ See full `predict` mode details in the [Predict](../modes/predict.md) page.
|
|||
|
||||
## Export
|
||||
|
||||
Export a YOLOv8n model to a different format like ONNX, CoreML, etc.
|
||||
Export a YOLO11n model to a different format like ONNX, CoreML, etc.
|
||||
|
||||
!!! example
|
||||
|
||||
|
|
@ -151,7 +151,7 @@ Export a YOLOv8n model to a different format like ONNX, CoreML, etc.
|
|||
from ultralytics import YOLO
|
||||
|
||||
# Load a model
|
||||
model = YOLO("yolov8n.pt") # load an official model
|
||||
model = YOLO("yolo11n.pt") # load an official model
|
||||
model = YOLO("path/to/best.pt") # load a custom trained model
|
||||
|
||||
# Export the model
|
||||
|
|
@ -161,11 +161,11 @@ Export a YOLOv8n model to a different format like ONNX, CoreML, etc.
|
|||
=== "CLI"
|
||||
|
||||
```bash
|
||||
yolo export model=yolov8n.pt format=onnx # export official model
|
||||
yolo export model=yolo11n.pt format=onnx # export official model
|
||||
yolo export model=path/to/best.pt format=onnx # export custom trained model
|
||||
```
|
||||
|
||||
Available YOLOv8 export formats are in the table below. You can export to any format using the `format` argument, i.e. `format='onnx'` or `format='engine'`. You can predict or validate directly on exported models, i.e. `yolo predict model=yolov8n.onnx`. Usage examples are shown for your model after export completes.
|
||||
Available YOLO11 export formats are in the table below. You can export to any format using the `format` argument, i.e. `format='onnx'` or `format='engine'`. You can predict or validate directly on exported models, i.e. `yolo predict model=yolo11n.onnx`. Usage examples are shown for your model after export completes.
|
||||
|
||||
{% include "macros/export-table.md" %}
|
||||
|
||||
|
|
@ -173,9 +173,9 @@ See full `export` details in the [Export](../modes/export.md) page.
|
|||
|
||||
## FAQ
|
||||
|
||||
### How do I train a YOLOv8 model on my custom dataset?
|
||||
### How do I train a YOLO11 model on my custom dataset?
|
||||
|
||||
Training a YOLOv8 model on a custom dataset involves a few steps:
|
||||
Training a YOLO11 model on a custom dataset involves a few steps:
|
||||
|
||||
1. **Prepare the Dataset**: Ensure your dataset is in the YOLO format. For guidance, refer to our [Dataset Guide](../datasets/detect/index.md).
|
||||
2. **Load the Model**: Use the Ultralytics YOLO library to load a pre-trained model or create a new model from a YAML file.
|
||||
|
|
@ -189,7 +189,7 @@ Training a YOLOv8 model on a custom dataset involves a few steps:
|
|||
from ultralytics import YOLO
|
||||
|
||||
# Load a pretrained model
|
||||
model = YOLO("yolov8n.pt")
|
||||
model = YOLO("yolo11n.pt")
|
||||
|
||||
# Train the model on your custom dataset
|
||||
model.train(data="my_custom_dataset.yaml", epochs=100, imgsz=640)
|
||||
|
|
@ -198,26 +198,26 @@ Training a YOLOv8 model on a custom dataset involves a few steps:
|
|||
=== "CLI"
|
||||
|
||||
```bash
|
||||
yolo detect train data=my_custom_dataset.yaml model=yolov8n.pt epochs=100 imgsz=640
|
||||
yolo detect train data=my_custom_dataset.yaml model=yolo11n.pt epochs=100 imgsz=640
|
||||
```
|
||||
|
||||
For detailed configuration options, visit the [Configuration](../usage/cfg.md) page.
|
||||
|
||||
### What pretrained models are available in YOLOv8?
|
||||
### What pretrained models are available in YOLO11?
|
||||
|
||||
Ultralytics YOLOv8 offers various pretrained models for object detection, segmentation, and pose estimation. These models are pretrained on the COCO dataset or ImageNet for classification tasks. Here are some of the available models:
|
||||
Ultralytics YOLO11 offers various pretrained models for object detection, segmentation, and pose estimation. These models are pretrained on the COCO dataset or ImageNet for classification tasks. Here are some of the available models:
|
||||
|
||||
- [YOLOv8n](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8n.pt)
|
||||
- [YOLOv8s](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8s.pt)
|
||||
- [YOLOv8m](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8m.pt)
|
||||
- [YOLOv8l](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8l.pt)
|
||||
- [YOLOv8x](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8x.pt)
|
||||
- [YOLO11n](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n.pt)
|
||||
- [YOLO11s](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s.pt)
|
||||
- [YOLO11m](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m.pt)
|
||||
- [YOLO11l](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l.pt)
|
||||
- [YOLO11x](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x.pt)
|
||||
|
||||
For a detailed list and performance metrics, refer to the [Models](https://github.com/ultralytics/ultralytics/tree/main/ultralytics/cfg/models/v8) section.
|
||||
For a detailed list and performance metrics, refer to the [Models](https://github.com/ultralytics/ultralytics/tree/main/ultralytics/cfg/models/11) section.
|
||||
|
||||
### How can I validate the accuracy of my trained YOLOv8 model?
|
||||
|
||||
To validate the accuracy of your trained YOLOv8 model, you can use the `.val()` method in Python or the `yolo detect val` command in CLI. This will provide metrics like mAP50-95, mAP50, and more.
|
||||
To validate the accuracy of your trained YOLO11 model, you can use the `.val()` method in Python or the `yolo detect val` command in CLI. This will provide metrics like mAP50-95, mAP50, and more.
|
||||
|
||||
!!! example
|
||||
|
||||
|
|
@ -242,9 +242,9 @@ To validate the accuracy of your trained YOLOv8 model, you can use the `.val()`
|
|||
|
||||
For more validation details, visit the [Val](../modes/val.md) page.
|
||||
|
||||
### What formats can I export a YOLOv8 model to?
|
||||
### What formats can I export a YOLO11 model to?
|
||||
|
||||
Ultralytics YOLOv8 allows exporting models to various formats such as ONNX, TensorRT, CoreML, and more to ensure compatibility across different platforms and devices.
|
||||
Ultralytics YOLO11 allows exporting models to various formats such as ONNX, TensorRT, CoreML, and more to ensure compatibility across different platforms and devices.
|
||||
|
||||
!!! example
|
||||
|
||||
|
|
@ -254,7 +254,7 @@ Ultralytics YOLOv8 allows exporting models to various formats such as ONNX, Tens
|
|||
from ultralytics import YOLO
|
||||
|
||||
# Load the model
|
||||
model = YOLO("yolov8n.pt")
|
||||
model = YOLO("yolo11n.pt")
|
||||
|
||||
# Export the model to ONNX format
|
||||
model.export(format="onnx")
|
||||
|
|
@ -263,18 +263,18 @@ Ultralytics YOLOv8 allows exporting models to various formats such as ONNX, Tens
|
|||
=== "CLI"
|
||||
|
||||
```bash
|
||||
yolo export model=yolov8n.pt format=onnx
|
||||
yolo export model=yolo11n.pt format=onnx
|
||||
```
|
||||
|
||||
Check the full list of supported formats and instructions on the [Export](../modes/export.md) page.
|
||||
|
||||
### Why should I use Ultralytics YOLOv8 for object detection?
|
||||
### Why should I use Ultralytics YOLO11 for object detection?
|
||||
|
||||
Ultralytics YOLOv8 is designed to offer state-of-the-art performance for object detection, segmentation, and pose estimation. Here are some key advantages:
|
||||
Ultralytics YOLO11 is designed to offer state-of-the-art performance for object detection, segmentation, and pose estimation. Here are some key advantages:
|
||||
|
||||
1. **Pretrained Models**: Utilize models pretrained on popular datasets like COCO and ImageNet for faster development.
|
||||
2. **High Accuracy**: Achieves impressive mAP scores, ensuring reliable object detection.
|
||||
3. **Speed**: Optimized for real-time inference, making it ideal for applications requiring swift processing.
|
||||
4. **Flexibility**: Export models to various formats like ONNX and TensorRT for deployment across multiple platforms.
|
||||
|
||||
Explore our [Blog](https://www.ultralytics.com/blog) for use cases and success stories showcasing YOLOv8 in action.
|
||||
Explore our [Blog](https://www.ultralytics.com/blog) for use cases and success stories showcasing YOLO11 in action.
|
||||
|
|
|
|||
|
|
@ -19,7 +19,7 @@ YOLO11 is an AI framework that supports multiple [computer vision](https://www.u
|
|||
allowfullscreen>
|
||||
</iframe>
|
||||
<br>
|
||||
<strong>Watch:</strong> Explore Ultralytics YOLO Tasks: [Object Detection](https://www.ultralytics.com/glossary/object-detection), Segmentation, OBB, Tracking, and Pose Estimation.
|
||||
<strong>Watch:</strong> Explore Ultralytics YOLO Tasks: <a href="https://www.ultralytics.com/glossary/object-detection">Object Detection</a>, Segmentation, OBB, Tracking, and Pose Estimation.
|
||||
</p>
|
||||
|
||||
## [Detection](detect.md)
|
||||
|
|
|
|||
|
|
@ -17,7 +17,7 @@ The output of an oriented object detector is a set of rotated bounding boxes tha
|
|||
|
||||
!!! tip
|
||||
|
||||
YOLOv8 OBB models use the `-obb` suffix, i.e. `yolov8n-obb.pt` and are pretrained on [DOTAv1](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/datasets/DOTAv1.yaml).
|
||||
YOLO11 OBB models use the `-obb` suffix, i.e. `yolo11n-obb.pt` and are pretrained on [DOTAv1](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/datasets/DOTAv1.yaml).
|
||||
|
||||
<p align="center">
|
||||
<br>
|
||||
|
|
@ -36,14 +36,14 @@ The output of an oriented object detector is a set of rotated bounding boxes tha
|
|||
| :------------------------------------------------------------------------------------------------------------------: | :----------------------------------------------------------------------------------------------------------------------: |
|
||||
|  |  |
|
||||
|
||||
## [Models](https://github.com/ultralytics/ultralytics/tree/main/ultralytics/cfg/models/v8)
|
||||
## [Models](https://github.com/ultralytics/ultralytics/tree/main/ultralytics/cfg/models/11)
|
||||
|
||||
YOLOv8 pretrained OBB models are shown here, which are pretrained on the [DOTAv1](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/datasets/DOTAv1.yaml) dataset.
|
||||
YOLO11 pretrained OBB models are shown here, which are pretrained on the [DOTAv1](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/datasets/DOTAv1.yaml) dataset.
|
||||
|
||||
[Models](https://github.com/ultralytics/ultralytics/tree/main/ultralytics/cfg/models) download automatically from the latest Ultralytics [release](https://github.com/ultralytics/assets/releases) on first use.
|
||||
|
||||
| Model | size<br><sup>(pixels) | mAP<sup>test<br>50 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>T4 TensorRT10<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
|
||||
|----------------------------------------------------------------------------------------------|-----------------------|--------------------|--------------------------------|-------------------------------------|--------------------|-------------------|
|
||||
| -------------------------------------------------------------------------------------------- | --------------------- | ------------------ | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
|
||||
| [YOLO11n-obb](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n-obb.pt) | 1024 | 78.4 | 117.6 ± 0.8 | 4.4 ± 0.0 | 2.7 | 17.2 |
|
||||
| [YOLO11s-obb](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s-obb.pt) | 1024 | 79.5 | 219.4 ± 4.0 | 5.1 ± 0.0 | 9.7 | 57.5 |
|
||||
| [YOLO11m-obb](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m-obb.pt) | 1024 | 80.9 | 562.8 ± 2.9 | 10.1 ± 0.4 | 20.9 | 183.5 |
|
||||
|
|
@ -55,7 +55,7 @@ YOLOv8 pretrained OBB models are shown here, which are pretrained on the [DOTAv1
|
|||
|
||||
## Train
|
||||
|
||||
Train YOLOv8n-obb on the `dota8.yaml` dataset for 100 [epochs](https://www.ultralytics.com/glossary/epoch) at image size 640. For a full list of available arguments see the [Configuration](../usage/cfg.md) page.
|
||||
Train YOLO11n-obb on the `dota8.yaml` dataset for 100 [epochs](https://www.ultralytics.com/glossary/epoch) at image size 640. For a full list of available arguments see the [Configuration](../usage/cfg.md) page.
|
||||
|
||||
!!! example
|
||||
|
||||
|
|
@ -65,9 +65,9 @@ Train YOLOv8n-obb on the `dota8.yaml` dataset for 100 [epochs](https://www.ultra
|
|||
from ultralytics import YOLO
|
||||
|
||||
# Load a model
|
||||
model = YOLO("yolov8n-obb.yaml") # build a new model from YAML
|
||||
model = YOLO("yolov8n-obb.pt") # load a pretrained model (recommended for training)
|
||||
model = YOLO("yolov8n-obb.yaml").load("yolov8n.pt") # build from YAML and transfer weights
|
||||
model = YOLO("yolo11n-obb.yaml") # build a new model from YAML
|
||||
model = YOLO("yolo11n-obb.pt") # load a pretrained model (recommended for training)
|
||||
model = YOLO("yolo11n-obb.yaml").load("yolo11n.pt") # build from YAML and transfer weights
|
||||
|
||||
# Train the model
|
||||
results = model.train(data="dota8.yaml", epochs=100, imgsz=640)
|
||||
|
|
@ -77,13 +77,13 @@ Train YOLOv8n-obb on the `dota8.yaml` dataset for 100 [epochs](https://www.ultra
|
|||
|
||||
```bash
|
||||
# Build a new model from YAML and start training from scratch
|
||||
yolo obb train data=dota8.yaml model=yolov8n-obb.yaml epochs=100 imgsz=640
|
||||
yolo obb train data=dota8.yaml model=yolo11n-obb.yaml epochs=100 imgsz=640
|
||||
|
||||
# Start training from a pretrained *.pt model
|
||||
yolo obb train data=dota8.yaml model=yolov8n-obb.pt epochs=100 imgsz=640
|
||||
yolo obb train data=dota8.yaml model=yolo11n-obb.pt epochs=100 imgsz=640
|
||||
|
||||
# Build a new model from YAML, transfer pretrained weights to it and start training
|
||||
yolo obb train data=dota8.yaml model=yolov8n-obb.yaml pretrained=yolov8n-obb.pt epochs=100 imgsz=640
|
||||
yolo obb train data=dota8.yaml model=yolo11n-obb.yaml pretrained=yolo11n-obb.pt epochs=100 imgsz=640
|
||||
```
|
||||
|
||||
<p align="center">
|
||||
|
|
@ -103,7 +103,7 @@ OBB dataset format can be found in detail in the [Dataset Guide](../datasets/obb
|
|||
|
||||
## Val
|
||||
|
||||
Validate trained YOLOv8n-obb model [accuracy](https://www.ultralytics.com/glossary/accuracy) on the DOTA8 dataset. No arguments are needed as the `model` retains its training `data` and arguments as model attributes.
|
||||
Validate trained YOLO11n-obb model [accuracy](https://www.ultralytics.com/glossary/accuracy) on the DOTA8 dataset. No arguments are needed as the `model` retains its training `data` and arguments as model attributes.
|
||||
|
||||
!!! example
|
||||
|
||||
|
|
@ -113,7 +113,7 @@ Validate trained YOLOv8n-obb model [accuracy](https://www.ultralytics.com/glossa
|
|||
from ultralytics import YOLO
|
||||
|
||||
# Load a model
|
||||
model = YOLO("yolov8n-obb.pt") # load an official model
|
||||
model = YOLO("yolo11n-obb.pt") # load an official model
|
||||
model = YOLO("path/to/best.pt") # load a custom model
|
||||
|
||||
# Validate the model
|
||||
|
|
@ -127,13 +127,13 @@ Validate trained YOLOv8n-obb model [accuracy](https://www.ultralytics.com/glossa
|
|||
=== "CLI"
|
||||
|
||||
```bash
|
||||
yolo obb val model=yolov8n-obb.pt data=dota8.yaml # val official model
|
||||
yolo obb val model=yolo11n-obb.pt data=dota8.yaml # val official model
|
||||
yolo obb val model=path/to/best.pt data=path/to/data.yaml # val custom model
|
||||
```
|
||||
|
||||
## Predict
|
||||
|
||||
Use a trained YOLOv8n-obb model to run predictions on images.
|
||||
Use a trained YOLO11n-obb model to run predictions on images.
|
||||
|
||||
!!! example
|
||||
|
||||
|
|
@ -143,7 +143,7 @@ Use a trained YOLOv8n-obb model to run predictions on images.
|
|||
from ultralytics import YOLO
|
||||
|
||||
# Load a model
|
||||
model = YOLO("yolov8n-obb.pt") # load an official model
|
||||
model = YOLO("yolo11n-obb.pt") # load an official model
|
||||
model = YOLO("path/to/best.pt") # load a custom model
|
||||
|
||||
# Predict with the model
|
||||
|
|
@ -153,7 +153,7 @@ Use a trained YOLOv8n-obb model to run predictions on images.
|
|||
=== "CLI"
|
||||
|
||||
```bash
|
||||
yolo obb predict model=yolov8n-obb.pt source='https://ultralytics.com/images/bus.jpg' # predict with official model
|
||||
yolo obb predict model=yolo11n-obb.pt source='https://ultralytics.com/images/bus.jpg' # predict with official model
|
||||
yolo obb predict model=path/to/best.pt source='https://ultralytics.com/images/bus.jpg' # predict with custom model
|
||||
```
|
||||
|
||||
|
|
@ -172,7 +172,7 @@ See full `predict` mode details in the [Predict](../modes/predict.md) page.
|
|||
|
||||
## Export
|
||||
|
||||
Export a YOLOv8n-obb model to a different format like ONNX, CoreML, etc.
|
||||
Export a YOLO11n-obb model to a different format like ONNX, CoreML, etc.
|
||||
|
||||
!!! example
|
||||
|
||||
|
|
@ -182,7 +182,7 @@ Export a YOLOv8n-obb model to a different format like ONNX, CoreML, etc.
|
|||
from ultralytics import YOLO
|
||||
|
||||
# Load a model
|
||||
model = YOLO("yolov8n-obb.pt") # load an official model
|
||||
model = YOLO("yolo11n-obb.pt") # load an official model
|
||||
model = YOLO("path/to/best.pt") # load a custom trained model
|
||||
|
||||
# Export the model
|
||||
|
|
@ -192,11 +192,11 @@ Export a YOLOv8n-obb model to a different format like ONNX, CoreML, etc.
|
|||
=== "CLI"
|
||||
|
||||
```bash
|
||||
yolo export model=yolov8n-obb.pt format=onnx # export official model
|
||||
yolo export model=yolo11n-obb.pt format=onnx # export official model
|
||||
yolo export model=path/to/best.pt format=onnx # export custom trained model
|
||||
```
|
||||
|
||||
Available YOLOv8-obb export formats are in the table below. You can export to any format using the `format` argument, i.e. `format='onnx'` or `format='engine'`. You can predict or validate directly on exported models, i.e. `yolo predict model=yolov8n-obb.onnx`. Usage examples are shown for your model after export completes.
|
||||
Available YOLO11-obb export formats are in the table below. You can export to any format using the `format` argument, i.e. `format='onnx'` or `format='engine'`. You can predict or validate directly on exported models, i.e. `yolo predict model=yolo11n-obb.onnx`. Usage examples are shown for your model after export completes.
|
||||
|
||||
{% include "macros/export-table.md" %}
|
||||
|
||||
|
|
@ -208,9 +208,9 @@ See full `export` details in the [Export](../modes/export.md) page.
|
|||
|
||||
Oriented Bounding Boxes (OBB) include an additional angle to enhance object localization accuracy in images. Unlike regular bounding boxes, which are axis-aligned rectangles, OBBs can rotate to fit the orientation of the object better. This is particularly useful for applications requiring precise object placement, such as aerial or satellite imagery ([Dataset Guide](../datasets/obb/index.md)).
|
||||
|
||||
### How do I train a YOLOv8n-obb model using a custom dataset?
|
||||
### How do I train a YOLO11n-obb model using a custom dataset?
|
||||
|
||||
To train a YOLOv8n-obb model with a custom dataset, follow the example below using Python or CLI:
|
||||
To train a YOLO11n-obb model with a custom dataset, follow the example below using Python or CLI:
|
||||
|
||||
!!! example
|
||||
|
||||
|
|
@ -220,7 +220,7 @@ To train a YOLOv8n-obb model with a custom dataset, follow the example below usi
|
|||
from ultralytics import YOLO
|
||||
|
||||
# Load a pretrained model
|
||||
model = YOLO("yolov8n-obb.pt")
|
||||
model = YOLO("yolo11n-obb.pt")
|
||||
|
||||
# Train the model
|
||||
results = model.train(data="path/to/custom_dataset.yaml", epochs=100, imgsz=640)
|
||||
|
|
@ -229,18 +229,18 @@ To train a YOLOv8n-obb model with a custom dataset, follow the example below usi
|
|||
=== "CLI"
|
||||
|
||||
```bash
|
||||
yolo obb train data=path/to/custom_dataset.yaml model=yolov8n-obb.pt epochs=100 imgsz=640
|
||||
yolo obb train data=path/to/custom_dataset.yaml model=yolo11n-obb.pt epochs=100 imgsz=640
|
||||
```
|
||||
|
||||
For more training arguments, check the [Configuration](../usage/cfg.md) section.
|
||||
|
||||
### What datasets can I use for training YOLOv8-OBB models?
|
||||
### What datasets can I use for training YOLO11-OBB models?
|
||||
|
||||
YOLOv8-OBB models are pretrained on datasets like [DOTAv1](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/datasets/DOTAv1.yaml) but you can use any dataset formatted for OBB. Detailed information on OBB dataset formats can be found in the [Dataset Guide](../datasets/obb/index.md).
|
||||
YOLO11-OBB models are pretrained on datasets like [DOTAv1](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/datasets/DOTAv1.yaml) but you can use any dataset formatted for OBB. Detailed information on OBB dataset formats can be found in the [Dataset Guide](../datasets/obb/index.md).
|
||||
|
||||
### How can I export a YOLOv8-OBB model to ONNX format?
|
||||
### How can I export a YOLO11-OBB model to ONNX format?
|
||||
|
||||
Exporting a YOLOv8-OBB model to ONNX format is straightforward using either Python or CLI:
|
||||
Exporting a YOLO11-OBB model to ONNX format is straightforward using either Python or CLI:
|
||||
|
||||
!!! example
|
||||
|
||||
|
|
@ -250,7 +250,7 @@ Exporting a YOLOv8-OBB model to ONNX format is straightforward using either Pyth
|
|||
from ultralytics import YOLO
|
||||
|
||||
# Load a model
|
||||
model = YOLO("yolov8n-obb.pt")
|
||||
model = YOLO("yolo11n-obb.pt")
|
||||
|
||||
# Export the model
|
||||
model.export(format="onnx")
|
||||
|
|
@ -259,14 +259,14 @@ Exporting a YOLOv8-OBB model to ONNX format is straightforward using either Pyth
|
|||
=== "CLI"
|
||||
|
||||
```bash
|
||||
yolo export model=yolov8n-obb.pt format=onnx
|
||||
yolo export model=yolo11n-obb.pt format=onnx
|
||||
```
|
||||
|
||||
For more export formats and details, refer to the [Export](../modes/export.md) page.
|
||||
|
||||
### How do I validate the accuracy of a YOLOv8n-obb model?
|
||||
### How do I validate the accuracy of a YOLO11n-obb model?
|
||||
|
||||
To validate a YOLOv8n-obb model, you can use Python or CLI commands as shown below:
|
||||
To validate a YOLO11n-obb model, you can use Python or CLI commands as shown below:
|
||||
|
||||
!!! example
|
||||
|
||||
|
|
@ -276,7 +276,7 @@ To validate a YOLOv8n-obb model, you can use Python or CLI commands as shown bel
|
|||
from ultralytics import YOLO
|
||||
|
||||
# Load a model
|
||||
model = YOLO("yolov8n-obb.pt")
|
||||
model = YOLO("yolo11n-obb.pt")
|
||||
|
||||
# Validate the model
|
||||
metrics = model.val(data="dota8.yaml")
|
||||
|
|
@ -285,7 +285,7 @@ To validate a YOLOv8n-obb model, you can use Python or CLI commands as shown bel
|
|||
=== "CLI"
|
||||
|
||||
```bash
|
||||
yolo obb val model=yolov8n-obb.pt data=dota8.yaml
|
||||
yolo obb val model=yolo11n-obb.pt data=dota8.yaml
|
||||
```
|
||||
|
||||
See full validation details in the [Val](../modes/val.md) section.
|
||||
|
|
|
|||
|
|
@ -38,9 +38,9 @@ The output of a pose estimation model is a set of points that represent the keyp
|
|||
|
||||
!!! tip
|
||||
|
||||
YOLOv8 _pose_ models use the `-pose` suffix, i.e. `yolov8n-pose.pt`. These models are trained on the [COCO keypoints](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/datasets/coco-pose.yaml) dataset and are suitable for a variety of pose estimation tasks.
|
||||
YOLO11 _pose_ models use the `-pose` suffix, i.e. `yolo11n-pose.pt`. These models are trained on the [COCO keypoints](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/datasets/coco-pose.yaml) dataset and are suitable for a variety of pose estimation tasks.
|
||||
|
||||
In the default YOLOv8 pose model, there are 17 keypoints, each representing a different part of the human body. Here is the mapping of each index to its respective body joint:
|
||||
In the default YOLO11 pose model, there are 17 keypoints, each representing a different part of the human body. Here is the mapping of each index to its respective body joint:
|
||||
|
||||
0: Nose
|
||||
1: Left Eye
|
||||
|
|
@ -60,14 +60,14 @@ The output of a pose estimation model is a set of points that represent the keyp
|
|||
15: Left Ankle
|
||||
16: Right Ankle
|
||||
|
||||
## [Models](https://github.com/ultralytics/ultralytics/tree/main/ultralytics/cfg/models/v8)
|
||||
## [Models](https://github.com/ultralytics/ultralytics/tree/main/ultralytics/cfg/models/11)
|
||||
|
||||
YOLOv8 pretrained Pose models are shown here. Detect, Segment and Pose models are pretrained on the [COCO](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/datasets/coco.yaml) dataset, while Classify models are pretrained on the [ImageNet](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/datasets/ImageNet.yaml) dataset.
|
||||
YOLO11 pretrained Pose models are shown here. Detect, Segment and Pose models are pretrained on the [COCO](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/datasets/coco.yaml) dataset, while Classify models are pretrained on the [ImageNet](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/datasets/ImageNet.yaml) dataset.
|
||||
|
||||
[Models](https://github.com/ultralytics/ultralytics/tree/main/ultralytics/cfg/models) download automatically from the latest Ultralytics [release](https://github.com/ultralytics/assets/releases) on first use.
|
||||
|
||||
| Model | size<br><sup>(pixels) | mAP<sup>pose<br>50-95 | mAP<sup>pose<br>50 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>T4 TensorRT10<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
|
||||
|------------------------------------------------------------------------------------------------|-----------------------|-----------------------|--------------------|--------------------------------|-------------------------------------|--------------------|-------------------|
|
||||
| ---------------------------------------------------------------------------------------------- | --------------------- | --------------------- | ------------------ | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
|
||||
| [YOLO11n-pose](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n-pose.pt) | 640 | 50.0 | 81.0 | 52.4 ± 0.5 | 1.7 ± 0.0 | 2.9 | 7.6 |
|
||||
| [YOLO11s-pose](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s-pose.pt) | 640 | 58.9 | 86.3 | 90.5 ± 0.6 | 2.6 ± 0.0 | 9.9 | 23.2 |
|
||||
| [YOLO11m-pose](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m-pose.pt) | 640 | 64.9 | 89.4 | 187.3 ± 0.8 | 4.9 ± 0.1 | 20.9 | 71.7 |
|
||||
|
|
@ -79,7 +79,7 @@ YOLOv8 pretrained Pose models are shown here. Detect, Segment and Pose models ar
|
|||
|
||||
## Train
|
||||
|
||||
Train a YOLOv8-pose model on the COCO128-pose dataset.
|
||||
Train a YOLO11-pose model on the COCO128-pose dataset.
|
||||
|
||||
!!! example
|
||||
|
||||
|
|
@ -89,9 +89,9 @@ Train a YOLOv8-pose model on the COCO128-pose dataset.
|
|||
from ultralytics import YOLO
|
||||
|
||||
# Load a model
|
||||
model = YOLO("yolov8n-pose.yaml") # build a new model from YAML
|
||||
model = YOLO("yolov8n-pose.pt") # load a pretrained model (recommended for training)
|
||||
model = YOLO("yolov8n-pose.yaml").load("yolov8n-pose.pt") # build from YAML and transfer weights
|
||||
model = YOLO("yolo11n-pose.yaml") # build a new model from YAML
|
||||
model = YOLO("yolo11n-pose.pt") # load a pretrained model (recommended for training)
|
||||
model = YOLO("yolo11n-pose.yaml").load("yolo11n-pose.pt") # build from YAML and transfer weights
|
||||
|
||||
# Train the model
|
||||
results = model.train(data="coco8-pose.yaml", epochs=100, imgsz=640)
|
||||
|
|
@ -101,13 +101,13 @@ Train a YOLOv8-pose model on the COCO128-pose dataset.
|
|||
|
||||
```bash
|
||||
# Build a new model from YAML and start training from scratch
|
||||
yolo pose train data=coco8-pose.yaml model=yolov8n-pose.yaml epochs=100 imgsz=640
|
||||
yolo pose train data=coco8-pose.yaml model=yolo11n-pose.yaml epochs=100 imgsz=640
|
||||
|
||||
# Start training from a pretrained *.pt model
|
||||
yolo pose train data=coco8-pose.yaml model=yolov8n-pose.pt epochs=100 imgsz=640
|
||||
yolo pose train data=coco8-pose.yaml model=yolo11n-pose.pt epochs=100 imgsz=640
|
||||
|
||||
# Build a new model from YAML, transfer pretrained weights to it and start training
|
||||
yolo pose train data=coco8-pose.yaml model=yolov8n-pose.yaml pretrained=yolov8n-pose.pt epochs=100 imgsz=640
|
||||
yolo pose train data=coco8-pose.yaml model=yolo11n-pose.yaml pretrained=yolo11n-pose.pt epochs=100 imgsz=640
|
||||
```
|
||||
|
||||
### Dataset format
|
||||
|
|
@ -116,7 +116,7 @@ YOLO pose dataset format can be found in detail in the [Dataset Guide](../datase
|
|||
|
||||
## Val
|
||||
|
||||
Validate trained YOLOv8n-pose model [accuracy](https://www.ultralytics.com/glossary/accuracy) on the COCO128-pose dataset. No arguments are needed as the `model` retains its training `data` and arguments as model attributes.
|
||||
Validate trained YOLO11n-pose model [accuracy](https://www.ultralytics.com/glossary/accuracy) on the COCO128-pose dataset. No arguments are needed as the `model` retains its training `data` and arguments as model attributes.
|
||||
|
||||
!!! example
|
||||
|
||||
|
|
@ -126,7 +126,7 @@ Validate trained YOLOv8n-pose model [accuracy](https://www.ultralytics.com/gloss
|
|||
from ultralytics import YOLO
|
||||
|
||||
# Load a model
|
||||
model = YOLO("yolov8n-pose.pt") # load an official model
|
||||
model = YOLO("yolo11n-pose.pt") # load an official model
|
||||
model = YOLO("path/to/best.pt") # load a custom model
|
||||
|
||||
# Validate the model
|
||||
|
|
@ -140,13 +140,13 @@ Validate trained YOLOv8n-pose model [accuracy](https://www.ultralytics.com/gloss
|
|||
=== "CLI"
|
||||
|
||||
```bash
|
||||
yolo pose val model=yolov8n-pose.pt # val official model
|
||||
yolo pose val model=yolo11n-pose.pt # val official model
|
||||
yolo pose val model=path/to/best.pt # val custom model
|
||||
```
|
||||
|
||||
## Predict
|
||||
|
||||
Use a trained YOLOv8n-pose model to run predictions on images.
|
||||
Use a trained YOLO11n-pose model to run predictions on images.
|
||||
|
||||
!!! example
|
||||
|
||||
|
|
@ -156,7 +156,7 @@ Use a trained YOLOv8n-pose model to run predictions on images.
|
|||
from ultralytics import YOLO
|
||||
|
||||
# Load a model
|
||||
model = YOLO("yolov8n-pose.pt") # load an official model
|
||||
model = YOLO("yolo11n-pose.pt") # load an official model
|
||||
model = YOLO("path/to/best.pt") # load a custom model
|
||||
|
||||
# Predict with the model
|
||||
|
|
@ -166,7 +166,7 @@ Use a trained YOLOv8n-pose model to run predictions on images.
|
|||
=== "CLI"
|
||||
|
||||
```bash
|
||||
yolo pose predict model=yolov8n-pose.pt source='https://ultralytics.com/images/bus.jpg' # predict with official model
|
||||
yolo pose predict model=yolo11n-pose.pt source='https://ultralytics.com/images/bus.jpg' # predict with official model
|
||||
yolo pose predict model=path/to/best.pt source='https://ultralytics.com/images/bus.jpg' # predict with custom model
|
||||
```
|
||||
|
||||
|
|
@ -174,7 +174,7 @@ See full `predict` mode details in the [Predict](../modes/predict.md) page.
|
|||
|
||||
## Export
|
||||
|
||||
Export a YOLOv8n Pose model to a different format like ONNX, CoreML, etc.
|
||||
Export a YOLO11n Pose model to a different format like ONNX, CoreML, etc.
|
||||
|
||||
!!! example
|
||||
|
||||
|
|
@ -184,7 +184,7 @@ Export a YOLOv8n Pose model to a different format like ONNX, CoreML, etc.
|
|||
from ultralytics import YOLO
|
||||
|
||||
# Load a model
|
||||
model = YOLO("yolov8n-pose.pt") # load an official model
|
||||
model = YOLO("yolo11n-pose.pt") # load an official model
|
||||
model = YOLO("path/to/best.pt") # load a custom trained model
|
||||
|
||||
# Export the model
|
||||
|
|
@ -194,11 +194,11 @@ Export a YOLOv8n Pose model to a different format like ONNX, CoreML, etc.
|
|||
=== "CLI"
|
||||
|
||||
```bash
|
||||
yolo export model=yolov8n-pose.pt format=onnx # export official model
|
||||
yolo export model=yolo11n-pose.pt format=onnx # export official model
|
||||
yolo export model=path/to/best.pt format=onnx # export custom trained model
|
||||
```
|
||||
|
||||
Available YOLOv8-pose export formats are in the table below. You can export to any format using the `format` argument, i.e. `format='onnx'` or `format='engine'`. You can predict or validate directly on exported models, i.e. `yolo predict model=yolov8n-pose.onnx`. Usage examples are shown for your model after export completes.
|
||||
Available YOLO11-pose export formats are in the table below. You can export to any format using the `format` argument, i.e. `format='onnx'` or `format='engine'`. You can predict or validate directly on exported models, i.e. `yolo predict model=yolo11n-pose.onnx`. Usage examples are shown for your model after export completes.
|
||||
|
||||
{% include "macros/export-table.md" %}
|
||||
|
||||
|
|
@ -206,20 +206,20 @@ See full `export` details in the [Export](../modes/export.md) page.
|
|||
|
||||
## FAQ
|
||||
|
||||
### What is Pose Estimation with Ultralytics YOLOv8 and how does it work?
|
||||
### What is Pose Estimation with Ultralytics YOLO11 and how does it work?
|
||||
|
||||
Pose estimation with Ultralytics YOLOv8 involves identifying specific points, known as keypoints, in an image. These keypoints typically represent joints or other important features of the object. The output includes the `[x, y]` coordinates and confidence scores for each point. YOLOv8-pose models are specifically designed for this task and use the `-pose` suffix, such as `yolov8n-pose.pt`. These models are pre-trained on datasets like [COCO keypoints](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/datasets/coco-pose.yaml) and can be used for various pose estimation tasks. For more information, visit the [Pose Estimation Page](#pose-estimation).
|
||||
Pose estimation with Ultralytics YOLO11 involves identifying specific points, known as keypoints, in an image. These keypoints typically represent joints or other important features of the object. The output includes the `[x, y]` coordinates and confidence scores for each point. YOLO11-pose models are specifically designed for this task and use the `-pose` suffix, such as `yolo11n-pose.pt`. These models are pre-trained on datasets like [COCO keypoints](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/datasets/coco-pose.yaml) and can be used for various pose estimation tasks. For more information, visit the [Pose Estimation Page](#pose-estimation).
|
||||
|
||||
### How can I train a YOLOv8-pose model on a custom dataset?
|
||||
### How can I train a YOLO11-pose model on a custom dataset?
|
||||
|
||||
Training a YOLOv8-pose model on a custom dataset involves loading a model, either a new model defined by a YAML file or a pre-trained model. You can then start the training process using your specified dataset and parameters.
|
||||
Training a YOLO11-pose model on a custom dataset involves loading a model, either a new model defined by a YAML file or a pre-trained model. You can then start the training process using your specified dataset and parameters.
|
||||
|
||||
```python
|
||||
from ultralytics import YOLO
|
||||
|
||||
# Load a model
|
||||
model = YOLO("yolov8n-pose.yaml") # build a new model from YAML
|
||||
model = YOLO("yolov8n-pose.pt") # load a pretrained model (recommended for training)
|
||||
model = YOLO("yolo11n-pose.yaml") # build a new model from YAML
|
||||
model = YOLO("yolo11n-pose.pt") # load a pretrained model (recommended for training)
|
||||
|
||||
# Train the model
|
||||
results = model.train(data="your-dataset.yaml", epochs=100, imgsz=640)
|
||||
|
|
@ -227,9 +227,9 @@ results = model.train(data="your-dataset.yaml", epochs=100, imgsz=640)
|
|||
|
||||
For comprehensive details on training, refer to the [Train Section](#train).
|
||||
|
||||
### How do I validate a trained YOLOv8-pose model?
|
||||
### How do I validate a trained YOLO11-pose model?
|
||||
|
||||
Validation of a YOLOv8-pose model involves assessing its accuracy using the same dataset parameters retained during training. Here's an example:
|
||||
Validation of a YOLO11-pose model involves assessing its accuracy using the same dataset parameters retained during training. Here's an example:
|
||||
|
||||
```python
|
||||
from ultralytics import YOLO
|
||||
|
|
@ -244,9 +244,9 @@ metrics = model.val() # no arguments needed, dataset and settings remembered
|
|||
|
||||
For more information, visit the [Val Section](#val).
|
||||
|
||||
### Can I export a YOLOv8-pose model to other formats, and how?
|
||||
### Can I export a YOLO11-pose model to other formats, and how?
|
||||
|
||||
Yes, you can export a YOLOv8-pose model to various formats like ONNX, CoreML, TensorRT, and more. This can be done using either Python or the Command Line Interface (CLI).
|
||||
Yes, you can export a YOLO11-pose model to various formats like ONNX, CoreML, TensorRT, and more. This can be done using either Python or the Command Line Interface (CLI).
|
||||
|
||||
```python
|
||||
from ultralytics import YOLO
|
||||
|
|
@ -261,6 +261,6 @@ model.export(format="onnx")
|
|||
|
||||
Refer to the [Export Section](#export) for more details.
|
||||
|
||||
### What are the available Ultralytics YOLOv8-pose models and their performance metrics?
|
||||
### What are the available Ultralytics YOLO11-pose models and their performance metrics?
|
||||
|
||||
Ultralytics YOLOv8 offers various pretrained pose models such as YOLOv8n-pose, YOLOv8s-pose, YOLOv8m-pose, among others. These models differ in size, accuracy (mAP), and speed. For instance, the YOLOv8n-pose model achieves a mAP<sup>pose</sup>50-95 of 50.4 and an mAP<sup>pose</sup>50 of 80.1. For a complete list and performance details, visit the [Models Section](#models).
|
||||
Ultralytics YOLO11 offers various pretrained pose models such as YOLO11n-pose, YOLO11s-pose, YOLO11m-pose, among others. These models differ in size, accuracy (mAP), and speed. For instance, the YOLO11n-pose model achieves a mAP<sup>pose</sup>50-95 of 50.4 and an mAP<sup>pose</sup>50 of 80.1. For a complete list and performance details, visit the [Models Section](#models).
|
||||
|
|
|
|||
|
|
@ -26,16 +26,16 @@ The output of an instance segmentation model is a set of masks or contours that
|
|||
|
||||
!!! tip
|
||||
|
||||
YOLOv8 Segment models use the `-seg` suffix, i.e. `yolov8n-seg.pt` and are pretrained on [COCO](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/datasets/coco.yaml).
|
||||
YOLO11 Segment models use the `-seg` suffix, i.e. `yolo11n-seg.pt` and are pretrained on [COCO](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/datasets/coco.yaml).
|
||||
|
||||
## [Models](https://github.com/ultralytics/ultralytics/tree/main/ultralytics/cfg/models/v8)
|
||||
## [Models](https://github.com/ultralytics/ultralytics/tree/main/ultralytics/cfg/models/11)
|
||||
|
||||
YOLOv8 pretrained Segment models are shown here. Detect, Segment and Pose models are pretrained on the [COCO](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/datasets/coco.yaml) dataset, while Classify models are pretrained on the [ImageNet](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/datasets/ImageNet.yaml) dataset.
|
||||
YOLO11 pretrained Segment models are shown here. Detect, Segment and Pose models are pretrained on the [COCO](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/datasets/coco.yaml) dataset, while Classify models are pretrained on the [ImageNet](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/datasets/ImageNet.yaml) dataset.
|
||||
|
||||
[Models](https://github.com/ultralytics/ultralytics/tree/main/ultralytics/cfg/models) download automatically from the latest Ultralytics [release](https://github.com/ultralytics/assets/releases) on first use.
|
||||
|
||||
| Model | size<br><sup>(pixels) | mAP<sup>box<br>50-95 | mAP<sup>mask<br>50-95 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>T4 TensorRT10<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
|
||||
|----------------------------------------------------------------------------------------------|-----------------------|----------------------|-----------------------|--------------------------------|-------------------------------------|--------------------|-------------------|
|
||||
| -------------------------------------------------------------------------------------------- | --------------------- | -------------------- | --------------------- | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
|
||||
| [YOLO11n-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n-seg.pt) | 640 | 38.9 | 32.0 | 65.9 ± 1.1 | 1.8 ± 0.0 | 2.9 | 10.4 |
|
||||
| [YOLO11s-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s-seg.pt) | 640 | 46.6 | 37.8 | 117.6 ± 4.9 | 2.9 ± 0.0 | 10.1 | 35.5 |
|
||||
| [YOLO11m-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m-seg.pt) | 640 | 51.5 | 41.5 | 281.6 ± 1.2 | 6.3 ± 0.1 | 22.4 | 123.3 |
|
||||
|
|
@ -47,7 +47,7 @@ YOLOv8 pretrained Segment models are shown here. Detect, Segment and Pose models
|
|||
|
||||
## Train
|
||||
|
||||
Train YOLOv8n-seg on the COCO128-seg dataset for 100 [epochs](https://www.ultralytics.com/glossary/epoch) at image size 640. For a full list of available arguments see the [Configuration](../usage/cfg.md) page.
|
||||
Train YOLO11n-seg on the COCO128-seg dataset for 100 [epochs](https://www.ultralytics.com/glossary/epoch) at image size 640. For a full list of available arguments see the [Configuration](../usage/cfg.md) page.
|
||||
|
||||
!!! example
|
||||
|
||||
|
|
@ -57,9 +57,9 @@ Train YOLOv8n-seg on the COCO128-seg dataset for 100 [epochs](https://www.ultral
|
|||
from ultralytics import YOLO
|
||||
|
||||
# Load a model
|
||||
model = YOLO("yolov8n-seg.yaml") # build a new model from YAML
|
||||
model = YOLO("yolov8n-seg.pt") # load a pretrained model (recommended for training)
|
||||
model = YOLO("yolov8n-seg.yaml").load("yolov8n.pt") # build from YAML and transfer weights
|
||||
model = YOLO("yolo11n-seg.yaml") # build a new model from YAML
|
||||
model = YOLO("yolo11n-seg.pt") # load a pretrained model (recommended for training)
|
||||
model = YOLO("yolo11n-seg.yaml").load("yolo11n.pt") # build from YAML and transfer weights
|
||||
|
||||
# Train the model
|
||||
results = model.train(data="coco8-seg.yaml", epochs=100, imgsz=640)
|
||||
|
|
@ -69,13 +69,13 @@ Train YOLOv8n-seg on the COCO128-seg dataset for 100 [epochs](https://www.ultral
|
|||
|
||||
```bash
|
||||
# Build a new model from YAML and start training from scratch
|
||||
yolo segment train data=coco8-seg.yaml model=yolov8n-seg.yaml epochs=100 imgsz=640
|
||||
yolo segment train data=coco8-seg.yaml model=yolo11n-seg.yaml epochs=100 imgsz=640
|
||||
|
||||
# Start training from a pretrained *.pt model
|
||||
yolo segment train data=coco8-seg.yaml model=yolov8n-seg.pt epochs=100 imgsz=640
|
||||
yolo segment train data=coco8-seg.yaml model=yolo11n-seg.pt epochs=100 imgsz=640
|
||||
|
||||
# Build a new model from YAML, transfer pretrained weights to it and start training
|
||||
yolo segment train data=coco8-seg.yaml model=yolov8n-seg.yaml pretrained=yolov8n-seg.pt epochs=100 imgsz=640
|
||||
yolo segment train data=coco8-seg.yaml model=yolo11n-seg.yaml pretrained=yolo11n-seg.pt epochs=100 imgsz=640
|
||||
```
|
||||
|
||||
### Dataset format
|
||||
|
|
@ -84,7 +84,7 @@ YOLO segmentation dataset format can be found in detail in the [Dataset Guide](.
|
|||
|
||||
## Val
|
||||
|
||||
Validate trained YOLOv8n-seg model [accuracy](https://www.ultralytics.com/glossary/accuracy) on the COCO128-seg dataset. No arguments are needed as the `model` retains its training `data` and arguments as model attributes.
|
||||
Validate trained YOLO11n-seg model [accuracy](https://www.ultralytics.com/glossary/accuracy) on the COCO128-seg dataset. No arguments are needed as the `model` retains its training `data` and arguments as model attributes.
|
||||
|
||||
!!! example
|
||||
|
||||
|
|
@ -94,7 +94,7 @@ Validate trained YOLOv8n-seg model [accuracy](https://www.ultralytics.com/glossa
|
|||
from ultralytics import YOLO
|
||||
|
||||
# Load a model
|
||||
model = YOLO("yolov8n-seg.pt") # load an official model
|
||||
model = YOLO("yolo11n-seg.pt") # load an official model
|
||||
model = YOLO("path/to/best.pt") # load a custom model
|
||||
|
||||
# Validate the model
|
||||
|
|
@ -112,13 +112,13 @@ Validate trained YOLOv8n-seg model [accuracy](https://www.ultralytics.com/glossa
|
|||
=== "CLI"
|
||||
|
||||
```bash
|
||||
yolo segment val model=yolov8n-seg.pt # val official model
|
||||
yolo segment val model=yolo11n-seg.pt # val official model
|
||||
yolo segment val model=path/to/best.pt # val custom model
|
||||
```
|
||||
|
||||
## Predict
|
||||
|
||||
Use a trained YOLOv8n-seg model to run predictions on images.
|
||||
Use a trained YOLO11n-seg model to run predictions on images.
|
||||
|
||||
!!! example
|
||||
|
||||
|
|
@ -128,7 +128,7 @@ Use a trained YOLOv8n-seg model to run predictions on images.
|
|||
from ultralytics import YOLO
|
||||
|
||||
# Load a model
|
||||
model = YOLO("yolov8n-seg.pt") # load an official model
|
||||
model = YOLO("yolo11n-seg.pt") # load an official model
|
||||
model = YOLO("path/to/best.pt") # load a custom model
|
||||
|
||||
# Predict with the model
|
||||
|
|
@ -138,7 +138,7 @@ Use a trained YOLOv8n-seg model to run predictions on images.
|
|||
=== "CLI"
|
||||
|
||||
```bash
|
||||
yolo segment predict model=yolov8n-seg.pt source='https://ultralytics.com/images/bus.jpg' # predict with official model
|
||||
yolo segment predict model=yolo11n-seg.pt source='https://ultralytics.com/images/bus.jpg' # predict with official model
|
||||
yolo segment predict model=path/to/best.pt source='https://ultralytics.com/images/bus.jpg' # predict with custom model
|
||||
```
|
||||
|
||||
|
|
@ -146,7 +146,7 @@ See full `predict` mode details in the [Predict](../modes/predict.md) page.
|
|||
|
||||
## Export
|
||||
|
||||
Export a YOLOv8n-seg model to a different format like ONNX, CoreML, etc.
|
||||
Export a YOLO11n-seg model to a different format like ONNX, CoreML, etc.
|
||||
|
||||
!!! example
|
||||
|
||||
|
|
@ -156,7 +156,7 @@ Export a YOLOv8n-seg model to a different format like ONNX, CoreML, etc.
|
|||
from ultralytics import YOLO
|
||||
|
||||
# Load a model
|
||||
model = YOLO("yolov8n-seg.pt") # load an official model
|
||||
model = YOLO("yolo11n-seg.pt") # load an official model
|
||||
model = YOLO("path/to/best.pt") # load a custom trained model
|
||||
|
||||
# Export the model
|
||||
|
|
@ -166,11 +166,11 @@ Export a YOLOv8n-seg model to a different format like ONNX, CoreML, etc.
|
|||
=== "CLI"
|
||||
|
||||
```bash
|
||||
yolo export model=yolov8n-seg.pt format=onnx # export official model
|
||||
yolo export model=yolo11n-seg.pt format=onnx # export official model
|
||||
yolo export model=path/to/best.pt format=onnx # export custom trained model
|
||||
```
|
||||
|
||||
Available YOLOv8-seg export formats are in the table below. You can export to any format using the `format` argument, i.e. `format='onnx'` or `format='engine'`. You can predict or validate directly on exported models, i.e. `yolo predict model=yolov8n-seg.onnx`. Usage examples are shown for your model after export completes.
|
||||
Available YOLO11-seg export formats are in the table below. You can export to any format using the `format` argument, i.e. `format='onnx'` or `format='engine'`. You can predict or validate directly on exported models, i.e. `yolo predict model=yolo11n-seg.onnx`. Usage examples are shown for your model after export completes.
|
||||
|
||||
{% include "macros/export-table.md" %}
|
||||
|
||||
|
|
@ -178,9 +178,9 @@ See full `export` details in the [Export](../modes/export.md) page.
|
|||
|
||||
## FAQ
|
||||
|
||||
### How do I train a YOLOv8 segmentation model on a custom dataset?
|
||||
### How do I train a YOLO11 segmentation model on a custom dataset?
|
||||
|
||||
To train a YOLOv8 segmentation model on a custom dataset, you first need to prepare your dataset in the YOLO segmentation format. You can use tools like [JSON2YOLO](https://github.com/ultralytics/JSON2YOLO) to convert datasets from other formats. Once your dataset is ready, you can train the model using Python or CLI commands:
|
||||
To train a YOLO11 segmentation model on a custom dataset, you first need to prepare your dataset in the YOLO segmentation format. You can use tools like [JSON2YOLO](https://github.com/ultralytics/JSON2YOLO) to convert datasets from other formats. Once your dataset is ready, you can train the model using Python or CLI commands:
|
||||
|
||||
!!! example
|
||||
|
||||
|
|
@ -189,8 +189,8 @@ To train a YOLOv8 segmentation model on a custom dataset, you first need to prep
|
|||
```python
|
||||
from ultralytics import YOLO
|
||||
|
||||
# Load a pretrained YOLOv8 segment model
|
||||
model = YOLO("yolov8n-seg.pt")
|
||||
# Load a pretrained YOLO11 segment model
|
||||
model = YOLO("yolo11n-seg.pt")
|
||||
|
||||
# Train the model
|
||||
results = model.train(data="path/to/your_dataset.yaml", epochs=100, imgsz=640)
|
||||
|
|
@ -199,18 +199,18 @@ To train a YOLOv8 segmentation model on a custom dataset, you first need to prep
|
|||
=== "CLI"
|
||||
|
||||
```bash
|
||||
yolo segment train data=path/to/your_dataset.yaml model=yolov8n-seg.pt epochs=100 imgsz=640
|
||||
yolo segment train data=path/to/your_dataset.yaml model=yolo11n-seg.pt epochs=100 imgsz=640
|
||||
```
|
||||
|
||||
Check the [Configuration](../usage/cfg.md) page for more available arguments.
|
||||
|
||||
### What is the difference between [object detection](https://www.ultralytics.com/glossary/object-detection) and instance segmentation in YOLOv8?
|
||||
### What is the difference between [object detection](https://www.ultralytics.com/glossary/object-detection) and instance segmentation in YOLO11?
|
||||
|
||||
Object detection identifies and localizes objects within an image by drawing bounding boxes around them, whereas instance segmentation not only identifies the bounding boxes but also delineates the exact shape of each object. YOLOv8 instance segmentation models provide masks or contours that outline each detected object, which is particularly useful for tasks where knowing the precise shape of objects is important, such as medical imaging or autonomous driving.
|
||||
Object detection identifies and localizes objects within an image by drawing bounding boxes around them, whereas instance segmentation not only identifies the bounding boxes but also delineates the exact shape of each object. YOLO11 instance segmentation models provide masks or contours that outline each detected object, which is particularly useful for tasks where knowing the precise shape of objects is important, such as medical imaging or autonomous driving.
|
||||
|
||||
### Why use YOLOv8 for instance segmentation?
|
||||
### Why use YOLO11 for instance segmentation?
|
||||
|
||||
Ultralytics YOLOv8 is a state-of-the-art model recognized for its high accuracy and real-time performance, making it ideal for instance segmentation tasks. YOLOv8 Segment models come pretrained on the [COCO dataset](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/datasets/coco.yaml), ensuring robust performance across a variety of objects. Additionally, YOLOv8 supports training, validation, prediction, and export functionalities with seamless integration, making it highly versatile for both research and industry applications.
|
||||
Ultralytics YOLO11 is a state-of-the-art model recognized for its high accuracy and real-time performance, making it ideal for instance segmentation tasks. YOLO11 Segment models come pretrained on the [COCO dataset](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/datasets/coco.yaml), ensuring robust performance across a variety of objects. Additionally, YOLOv8 supports training, validation, prediction, and export functionalities with seamless integration, making it highly versatile for both research and industry applications.
|
||||
|
||||
### How do I load and validate a pretrained YOLOv8 segmentation model?
|
||||
|
||||
|
|
@ -224,7 +224,7 @@ Loading and validating a pretrained YOLOv8 segmentation model is straightforward
|
|||
from ultralytics import YOLO
|
||||
|
||||
# Load a pretrained model
|
||||
model = YOLO("yolov8n-seg.pt")
|
||||
model = YOLO("yolo11n-seg.pt")
|
||||
|
||||
# Validate the model
|
||||
metrics = model.val()
|
||||
|
|
@ -235,7 +235,7 @@ Loading and validating a pretrained YOLOv8 segmentation model is straightforward
|
|||
=== "CLI"
|
||||
|
||||
```bash
|
||||
yolo segment val model=yolov8n-seg.pt
|
||||
yolo segment val model=yolo11n-seg.pt
|
||||
```
|
||||
|
||||
These steps will provide you with validation metrics like [Mean Average Precision](https://www.ultralytics.com/glossary/mean-average-precision-map) (mAP), crucial for assessing model performance.
|
||||
|
|
@ -252,7 +252,7 @@ Exporting a YOLOv8 segmentation model to ONNX format is simple and can be done u
|
|||
from ultralytics import YOLO
|
||||
|
||||
# Load a pretrained model
|
||||
model = YOLO("yolov8n-seg.pt")
|
||||
model = YOLO("yolo11n-seg.pt")
|
||||
|
||||
# Export the model to ONNX format
|
||||
model.export(format="onnx")
|
||||
|
|
@ -261,7 +261,7 @@ Exporting a YOLOv8 segmentation model to ONNX format is simple and can be done u
|
|||
=== "CLI"
|
||||
|
||||
```bash
|
||||
yolo export model=yolov8n-seg.pt format=onnx
|
||||
yolo export model=yolo11n-seg.pt format=onnx
|
||||
```
|
||||
|
||||
For more details on exporting to various formats, refer to the [Export](../modes/export.md) page.
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue