ultralytics 8.1.46 add TensorRT 10 support (#9516)

Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com>
Co-authored-by: UltralyticsAssistant <web@ultralytics.com>
Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>
Co-authored-by: 九是否随意的称呼 <1069679911@qq.com>
This commit is contained in:
Burhan 2024-04-10 12:07:53 -04:00 committed by GitHub
parent ea03db9984
commit 4ffd6ee6d7
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
4 changed files with 77 additions and 32 deletions

View file

@ -19,6 +19,13 @@ def test_checks():
assert torch.cuda.is_available() == CUDA_IS_AVAILABLE assert torch.cuda.is_available() == CUDA_IS_AVAILABLE
assert torch.cuda.device_count() == CUDA_DEVICE_COUNT assert torch.cuda.device_count() == CUDA_DEVICE_COUNT
@pytest.mark.slow
@pytest.mark.skipif(not CUDA_IS_AVAILABLE, reason="CUDA is not available")
def test_export_engine():
"""Test exporting the YOLO model to NVIDIA TensorRT format."""
f = YOLO(MODEL).export(format="engine", device=0)
YOLO(f)(BUS, device=0)
@pytest.mark.skipif(not CUDA_IS_AVAILABLE, reason="CUDA is not available") @pytest.mark.skipif(not CUDA_IS_AVAILABLE, reason="CUDA is not available")
def test_train(): def test_train():

View file

@ -1,6 +1,6 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license # Ultralytics YOLO 🚀, AGPL-3.0 license
__version__ = "8.1.45" __version__ = "8.1.46"
from ultralytics.data.explorer.explorer import Explorer from ultralytics.data.explorer.explorer import Explorer
from ultralytics.models import RTDETR, SAM, YOLO, YOLOWorld from ultralytics.models import RTDETR, SAM, YOLO, YOLOWorld

View file

@ -658,6 +658,7 @@ class Exporter:
def export_engine(self, prefix=colorstr("TensorRT:")): def export_engine(self, prefix=colorstr("TensorRT:")):
"""YOLOv8 TensorRT export https://developer.nvidia.com/tensorrt.""" """YOLOv8 TensorRT export https://developer.nvidia.com/tensorrt."""
assert self.im.device.type != "cpu", "export running on CPU but must be on GPU, i.e. use 'device=0'" assert self.im.device.type != "cpu", "export running on CPU but must be on GPU, i.e. use 'device=0'"
self.args.simplify = True
f_onnx, _ = self.export_onnx() # run before trt import https://github.com/ultralytics/ultralytics/issues/7016 f_onnx, _ = self.export_onnx() # run before trt import https://github.com/ultralytics/ultralytics/issues/7016
try: try:
@ -666,12 +667,10 @@ class Exporter:
if LINUX: if LINUX:
check_requirements("nvidia-tensorrt", cmds="-U --index-url https://pypi.ngc.nvidia.com") check_requirements("nvidia-tensorrt", cmds="-U --index-url https://pypi.ngc.nvidia.com")
import tensorrt as trt # noqa import tensorrt as trt # noqa
check_version(trt.__version__, "7.0.0", hard=True) # require tensorrt>=7.0.0 check_version(trt.__version__, "7.0.0", hard=True) # require tensorrt>=7.0.0
self.args.simplify = True
LOGGER.info(f"\n{prefix} starting export with TensorRT {trt.__version__}...") LOGGER.info(f"\n{prefix} starting export with TensorRT {trt.__version__}...")
is_trt10 = int(trt.__version__.split(".")[0]) >= 10 # is TensorRT >= 10
assert Path(f_onnx).exists(), f"failed to export ONNX file: {f_onnx}" assert Path(f_onnx).exists(), f"failed to export ONNX file: {f_onnx}"
f = self.file.with_suffix(".engine") # TensorRT engine file f = self.file.with_suffix(".engine") # TensorRT engine file
logger = trt.Logger(trt.Logger.INFO) logger = trt.Logger(trt.Logger.INFO)
@ -680,7 +679,11 @@ class Exporter:
builder = trt.Builder(logger) builder = trt.Builder(logger)
config = builder.create_builder_config() config = builder.create_builder_config()
config.max_workspace_size = int(self.args.workspace * (1 << 30)) workspace = int(self.args.workspace * (1 << 30))
if is_trt10:
config.set_memory_pool_limit(trt.MemoryPoolType.WORKSPACE, workspace)
else: # TensorRT versions 7, 8
config.max_workspace_size = workspace
flag = 1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH) flag = 1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)
network = builder.create_network(flag) network = builder.create_network(flag)
parser = trt.OnnxParser(network, logger) parser = trt.OnnxParser(network, logger)
@ -699,27 +702,31 @@ class Exporter:
if shape[0] <= 1: if shape[0] <= 1:
LOGGER.warning(f"{prefix} WARNING ⚠️ 'dynamic=True' model requires max batch size, i.e. 'batch=16'") LOGGER.warning(f"{prefix} WARNING ⚠️ 'dynamic=True' model requires max batch size, i.e. 'batch=16'")
profile = builder.create_optimization_profile() profile = builder.create_optimization_profile()
min_shape = (1, shape[1], 32, 32) # minimum input shape
opt_shape = (max(1, shape[0] // 2), *shape[1:]) # optimal input shape
max_shape = (*shape[:2], *(max(1, self.args.workspace) * d for d in shape[2:])) # max input shape
for inp in inputs: for inp in inputs:
profile.set_shape(inp.name, (1, *shape[1:]), (max(1, shape[0] // 2), *shape[1:]), shape) profile.set_shape(inp.name, min_shape, opt_shape, max_shape)
config.add_optimization_profile(profile) config.add_optimization_profile(profile)
LOGGER.info( half = builder.platform_has_fast_fp16 and self.args.half
f"{prefix} building FP{16 if builder.platform_has_fast_fp16 and self.args.half else 32} engine as {f}" LOGGER.info(f"{prefix} building FP{16 if half else 32} engine as {f}")
) if half:
if builder.platform_has_fast_fp16 and self.args.half:
config.set_flag(trt.BuilderFlag.FP16) config.set_flag(trt.BuilderFlag.FP16)
# Free CUDA memory
del self.model del self.model
torch.cuda.empty_cache() torch.cuda.empty_cache()
# Write file # Write file
with builder.build_engine(network, config) as engine, open(f, "wb") as t: build = builder.build_serialized_network if is_trt10 else builder.build_engine
with build(network, config) as engine, open(f, "wb") as t:
# Metadata # Metadata
meta = json.dumps(self.metadata) meta = json.dumps(self.metadata)
t.write(len(meta).to_bytes(4, byteorder="little", signed=True)) t.write(len(meta).to_bytes(4, byteorder="little", signed=True))
t.write(meta.encode()) t.write(meta.encode())
# Model # Model
t.write(engine.serialize()) t.write(engine if is_trt10 else engine.serialize())
return f, None return f, None

View file

@ -234,21 +234,45 @@ class AutoBackend(nn.Module):
meta_len = int.from_bytes(f.read(4), byteorder="little") # read metadata length meta_len = int.from_bytes(f.read(4), byteorder="little") # read metadata length
metadata = json.loads(f.read(meta_len).decode("utf-8")) # read metadata metadata = json.loads(f.read(meta_len).decode("utf-8")) # read metadata
model = runtime.deserialize_cuda_engine(f.read()) # read engine model = runtime.deserialize_cuda_engine(f.read()) # read engine
# Model context
try:
context = model.create_execution_context() context = model.create_execution_context()
except Exception as e: # model is None
LOGGER.error(f"ERROR: TensorRT model exported with a different version than {trt.__version__}\n")
raise e
bindings = OrderedDict() bindings = OrderedDict()
output_names = [] output_names = []
fp16 = False # default updated below fp16 = False # default updated below
dynamic = False dynamic = False
for i in range(model.num_bindings): is_trt10 = not hasattr(model, "num_bindings")
num = range(model.num_io_tensors) if is_trt10 else range(model.num_bindings)
for i in num:
if is_trt10:
name = model.get_tensor_name(i)
dtype = trt.nptype(model.get_tensor_dtype(name))
is_input = model.get_tensor_mode(name) == trt.TensorIOMode.INPUT
if is_input:
if -1 in tuple(model.get_tensor_shape(name)):
dynamic = True
context.set_input_shape(name, tuple(model.get_tensor_profile_shape(name, 0)[1]))
if dtype == np.float16:
fp16 = True
else:
output_names.append(name)
shape = tuple(context.get_tensor_shape(name))
else: # TensorRT < 10.0
name = model.get_binding_name(i) name = model.get_binding_name(i)
dtype = trt.nptype(model.get_binding_dtype(i)) dtype = trt.nptype(model.get_binding_dtype(i))
is_input = model.binding_is_input(i)
if model.binding_is_input(i): if model.binding_is_input(i):
if -1 in tuple(model.get_binding_shape(i)): # dynamic if -1 in tuple(model.get_binding_shape(i)): # dynamic
dynamic = True dynamic = True
context.set_binding_shape(i, tuple(model.get_profile_shape(0, i)[2])) context.set_binding_shape(i, tuple(model.get_profile_shape(0, i)[1]))
if dtype == np.float16: if dtype == np.float16:
fp16 = True fp16 = True
else: # output else:
output_names.append(name) output_names.append(name)
shape = tuple(context.get_binding_shape(i)) shape = tuple(context.get_binding_shape(i))
im = torch.from_numpy(np.empty(shape, dtype=dtype)).to(device) im = torch.from_numpy(np.empty(shape, dtype=dtype)).to(device)
@ -463,13 +487,20 @@ class AutoBackend(nn.Module):
# TensorRT # TensorRT
elif self.engine: elif self.engine:
if self.dynamic and im.shape != self.bindings["images"].shape: if self.dynamic or im.shape != self.bindings["images"].shape:
if self.is_trt10:
self.context.set_input_shape("images", im.shape)
self.bindings["images"] = self.bindings["images"]._replace(shape=im.shape)
for name in self.output_names:
self.bindings[name].data.resize_(tuple(self.context.get_tensor_shape(name)))
else:
i = self.model.get_binding_index("images") i = self.model.get_binding_index("images")
self.context.set_binding_shape(i, im.shape) # reshape if dynamic self.context.set_binding_shape(i, im.shape)
self.bindings["images"] = self.bindings["images"]._replace(shape=im.shape) self.bindings["images"] = self.bindings["images"]._replace(shape=im.shape)
for name in self.output_names: for name in self.output_names:
i = self.model.get_binding_index(name) i = self.model.get_binding_index(name)
self.bindings[name].data.resize_(tuple(self.context.get_binding_shape(i))) self.bindings[name].data.resize_(tuple(self.context.get_binding_shape(i)))
s = self.bindings["images"].shape s = self.bindings["images"].shape
assert im.shape == s, f"input size {im.shape} {'>' if self.dynamic else 'not equal to'} max model size {s}" assert im.shape == s, f"input size {im.shape} {'>' if self.dynamic else 'not equal to'} max model size {s}"
self.binding_addrs["images"] = int(im.data_ptr()) self.binding_addrs["images"] = int(im.data_ptr())