OBB Docs updates (#7512)
Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com> Co-authored-by: Muhammad Rizwan Munawar <chr043416@gmail.com> Co-authored-by: Laughing <61612323+Laughing-q@users.noreply.github.com>
This commit is contained in:
parent
09ee982d35
commit
4dc8c406f9
25 changed files with 117 additions and 47 deletions
|
|
@ -441,6 +441,7 @@ All Ultralytics `predict()` calls will return a list of `Results` objects:
|
|||
| `masks` | `Masks, optional` | A Masks object containing the detection masks. |
|
||||
| `probs` | `Probs, optional` | A Probs object containing probabilities of each class for classification task. |
|
||||
| `keypoints` | `Keypoints, optional` | A Keypoints object containing detected keypoints for each object. |
|
||||
| `obb` | `OBB, optional` | A OBB object containing the oriented detection bounding boxes. |
|
||||
| `speed` | `dict` | A dictionary of preprocess, inference, and postprocess speeds in milliseconds per image. |
|
||||
| `names` | `dict` | A dictionary of class names. |
|
||||
| `path` | `str` | The path to the image file. |
|
||||
|
|
@ -606,6 +607,44 @@ Here's a table summarizing the methods and properties for the `Probs` class:
|
|||
|
||||
For more details see the `Probs` class [documentation](../reference/engine/results.md#ultralytics.engine.results.Probs).
|
||||
|
||||
### OBB
|
||||
|
||||
`OBB` object can be used to index, manipulate, and convert oriented bounding boxes to different formats.
|
||||
|
||||
!!! Example "OBB"
|
||||
|
||||
```python
|
||||
from ultralytics import YOLO
|
||||
|
||||
# Load a pretrained YOLOv8n model
|
||||
model = YOLO('yolov8n-obb.pt')
|
||||
|
||||
# Run inference on an image
|
||||
results = model('bus.jpg') # results list
|
||||
|
||||
# View results
|
||||
for r in results:
|
||||
print(r.obb) # print the OBB object containing the oriented detection bounding boxes
|
||||
```
|
||||
|
||||
Here is a table for the `OBB` class methods and properties, including their name, type, and description:
|
||||
|
||||
| Name | Type | Description |
|
||||
|-------------|---------------------------|-----------------------------------------------------------------------|
|
||||
| `cpu()` | Method | Move the object to CPU memory. |
|
||||
| `numpy()` | Method | Convert the object to a numpy array. |
|
||||
| `cuda()` | Method | Move the object to CUDA memory. |
|
||||
| `to()` | Method | Move the object to the specified device. |
|
||||
| `conf` | Property (`torch.Tensor`) | Return the confidence values of the boxes. |
|
||||
| `cls` | Property (`torch.Tensor`) | Return the class values of the boxes. |
|
||||
| `id` | Property (`torch.Tensor`) | Return the track IDs of the boxes (if available). |
|
||||
| `xyxy` | Property (`torch.Tensor`) | Return the horizontal boxes in xyxy format. |
|
||||
| `xywhr` | Property (`torch.Tensor`) | Return the rotated boxes in xywhr format. |
|
||||
| `xyxyxyxy` | Property (`torch.Tensor`) | Return the rotated boxes in xyxyxyxy format. |
|
||||
| `xyxyxyxyn` | Property (`torch.Tensor`) | Return the rotated boxes in xyxyxyxy format normalized by image size. |
|
||||
|
||||
For more details see the `OBB` class [documentation](../reference/engine/results.md#ultralytics.engine.results.OBB).
|
||||
|
||||
## Plotting Results
|
||||
|
||||
You can use the `plot()` method of a `Result` objects to visualize predictions. It plots all prediction types (boxes, masks, keypoints, probabilities, etc.) contained in the `Results` object onto a numpy array that can then be shown or saved.
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue