Update information about YOLOv6 pretrained weights (#18450)
Signed-off-by: Mohammed Yasin <32206511+Y-T-G@users.noreply.github.com> Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com> Co-authored-by: UltralyticsAssistant <web@ultralytics.com> Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>
This commit is contained in:
parent
1d33db5fa9
commit
4c571311f7
1 changed files with 8 additions and 8 deletions
|
|
@ -40,7 +40,7 @@ This example provides simple YOLOv6 training and inference examples. For full do
|
|||
|
||||
=== "Python"
|
||||
|
||||
[PyTorch](https://www.ultralytics.com/glossary/pytorch) pretrained `*.pt` models as well as configuration `*.yaml` files can be passed to the `YOLO()` class to create a model instance in python:
|
||||
YOLOv6 `*.yaml` files can be passed to the `YOLO()` class to build the corresponding model in Python:
|
||||
|
||||
```python
|
||||
from ultralytics import YOLO
|
||||
|
|
@ -74,13 +74,13 @@ This example provides simple YOLOv6 training and inference examples. For full do
|
|||
|
||||
The YOLOv6 series offers a range of models, each optimized for high-performance [Object Detection](../tasks/detect.md). These models cater to varying computational needs and [accuracy](https://www.ultralytics.com/glossary/accuracy) requirements, making them versatile for a wide array of applications.
|
||||
|
||||
| Model Type | Pre-trained Weights | Tasks Supported | Inference | Validation | Training | Export |
|
||||
| ---------- | ------------------- | -------------------------------------- | --------- | ---------- | -------- | ------ |
|
||||
| YOLOv6-N | `yolov6-n.pt` | [Object Detection](../tasks/detect.md) | ✅ | ✅ | ✅ | ✅ |
|
||||
| YOLOv6-S | `yolov6-s.pt` | [Object Detection](../tasks/detect.md) | ✅ | ✅ | ✅ | ✅ |
|
||||
| YOLOv6-M | `yolov6-m.pt` | [Object Detection](../tasks/detect.md) | ✅ | ✅ | ✅ | ✅ |
|
||||
| YOLOv6-L | `yolov6-l.pt` | [Object Detection](../tasks/detect.md) | ✅ | ✅ | ✅ | ✅ |
|
||||
| YOLOv6-L6 | `yolov6-l6.pt` | [Object Detection](../tasks/detect.md) | ✅ | ✅ | ✅ | ✅ |
|
||||
| Model | Filenames | Tasks | Inference | Validation | Training | Export |
|
||||
| -------- | -------------- | -------------------------------------- | --------- | ---------- | -------- | ------ |
|
||||
| YOLOv6-N | `yolov6n.yaml` | [Object Detection](../tasks/detect.md) | ✅ | ✅ | ✅ | ✅ |
|
||||
| YOLOv6-S | `yolov6s.yaml` | [Object Detection](../tasks/detect.md) | ✅ | ✅ | ✅ | ✅ |
|
||||
| YOLOv6-M | `yolov6m.yaml` | [Object Detection](../tasks/detect.md) | ✅ | ✅ | ✅ | ✅ |
|
||||
| YOLOv6-L | `yolov6l.yaml` | [Object Detection](../tasks/detect.md) | ✅ | ✅ | ✅ | ✅ |
|
||||
| YOLOv6-X | `yolov6x.yaml` | [Object Detection](../tasks/detect.md) | ✅ | ✅ | ✅ | ✅ |
|
||||
|
||||
This table provides a detailed overview of the YOLOv6 model variants, highlighting their capabilities in [object detection](https://www.ultralytics.com/glossary/object-detection) tasks and their compatibility with various operational modes such as [Inference](../modes/predict.md), [Validation](../modes/val.md), [Training](../modes/train.md), and [Export](../modes/export.md). This comprehensive support ensures that users can fully leverage the capabilities of YOLOv6 models in a broad range of object detection scenarios.
|
||||
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue