This commit is contained in:
Glenn Jocher 2023-04-22 19:59:38 +02:00 committed by GitHub
parent 8f5eeb09f3
commit 4af9ca7382
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
15 changed files with 46 additions and 46 deletions

View file

@ -167,7 +167,7 @@ threading.Thread(target=run, args=[model1, 'https://ultralytics.com/images/bus.j
```
### Training
To load a YOLOv5 model for training rather than inference, set `autoshape=False`. To load a model with randomly initialized weights (to train from scratch) use `pretrained=False`. You must provide your own training script in this case. Alternatively see our YOLOv5 [Train Custom Data Tutorial](https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data) for model training.
To load a YOLOv5 model for training rather than inference, set `autoshape=False`. To load a model with randomly initialized weights (to train from scratch) use `pretrained=False`. You must provide your own training script in this case. Alternatively see our YOLOv5 [Train Custom Data Tutorial](https://docs.ultralytics.com/yolov5/tutorials/train_custom_data) for model training.
```python
model = torch.hub.load('ultralytics/yolov5', 'yolov5s', autoshape=False) # load pretrained
model = torch.hub.load('ultralytics/yolov5', 'yolov5s', autoshape=False, pretrained=False) # load scratch
@ -257,7 +257,7 @@ model = torch.hub.load('path/to/yolov5', 'custom', path='path/to/best.pt', sourc
## TensorRT, ONNX and OpenVINO Models
PyTorch Hub supports inference on most YOLOv5 export formats, including custom trained models. See [TFLite, ONNX, CoreML, TensorRT Export tutorial](https://github.com/ultralytics/yolov5/issues/251) for details on exporting models.
PyTorch Hub supports inference on most YOLOv5 export formats, including custom trained models. See [TFLite, ONNX, CoreML, TensorRT Export tutorial](https://docs.ultralytics.com/yolov5/tutorials/model_export) for details on exporting models.
💡 ProTip: **TensorRT** may be up to 2-5X faster than PyTorch on [**GPU benchmarks**](https://github.com/ultralytics/yolov5/pull/6963)
💡 ProTip: **ONNX** and **OpenVINO** may be up to 2-3X faster than PyTorch on [**CPU benchmarks**](https://github.com/ultralytics/yolov5/pull/6613)
@ -278,9 +278,9 @@ model = torch.hub.load('ultralytics/yolov5', 'custom', path='yolov5s.pt') # PyT
YOLOv5 may be run in any of the following up-to-date verified environments (with all dependencies including [CUDA](https://developer.nvidia.com/cuda)/[CUDNN](https://developer.nvidia.com/cudnn), [Python](https://www.python.org/) and [PyTorch](https://pytorch.org/) preinstalled):
- **Notebooks** with free GPU: <a href="https://bit.ly/yolov5-paperspace-notebook"><img src="https://assets.paperspace.io/img/gradient-badge.svg" alt="Run on Gradient"></a> <a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> <a href="https://www.kaggle.com/ultralytics/yolov5"><img src="https://kaggle.com/static/images/open-in-kaggle.svg" alt="Open In Kaggle"></a>
- **Google Cloud** Deep Learning VM. See [GCP Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/GCP-Quickstart)
- **Amazon** Deep Learning AMI. See [AWS Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/AWS-Quickstart)
- **Docker Image**. See [Docker Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/Docker-Quickstart) <a href="https://hub.docker.com/r/ultralytics/yolov5"><img src="https://img.shields.io/docker/pulls/ultralytics/yolov5?logo=docker" alt="Docker Pulls"></a>
- **Google Cloud** Deep Learning VM. See [GCP Quickstart Guide](https://docs.ultralytics.com/yolov5/environments/google_cloud_quickstart_tutorial/)
- **Amazon** Deep Learning AMI. See [AWS Quickstart Guide](https://docs.ultralytics.com/yolov5/environments/aws_quickstart_tutorial/)
- **Docker Image**. See [Docker Quickstart Guide](https://docs.ultralytics.com/yolov5/environments/docker_image_quickstart_tutorial/) <a href="https://hub.docker.com/r/ultralytics/yolov5"><img src="https://img.shields.io/docker/pulls/ultralytics/yolov5?logo=docker" alt="Docker Pulls"></a>
## Status